
SQS

SQS: Bayesian DNN Compression through
Sparse Quantized Sub-distributions
Ziyi Wang1, Nan Jiang2, Guang Lin3 and Qifan Song4
1Purdue University, IN, USA, 2University of Texas at El Paso, TX, USA

Compressing large-scale neural networks is essential for deploying models on resource-constrained
devices. Most existing methods adopt weight pruning or low-bit quantization individually, often resulting
in suboptimal compression rates to preserve acceptable performance drops. We introduce a unified
framework for simultaneous pruning and low-bit quantization via Bayesian variational learning (Sqs),
which achieves higher compression rates than prior baselines while maintaining comparable performance.
The key idea is to employ a spike-and-slab prior to inducing sparsity and model quantized weights
using Gaussian Mixture Models (GMMs) to enable low-bit precision. In theory, we provide the consistent
result of our proposed variational approach to a sparse and quantized deep neural network. Extensive
experiments on compressing ResNet, BERT-base, Llama3, and Qwen2.5 models show that our method
achieves higher compression rates than a line of existing methods with comparable performance drops.

1. Introduction

Deep Neural Networks (DNNs) have achieved state-of-the-art performance across a wide range of
tasks but at the cost of significantly increased computational and memory requirements (Kumar
et al., 2025; Radford et al., 2018; Touvron et al., 2023; Xu et al., 2020), making deployment on
resource-constrained devices challenging. Model compression is thus proposed to reduce the size and
computational complexity of DNNs while maintaining predictive accuracy, including pruning (Han
et al., 2016; LeCun et al., 1989), weight quantization (Courbariaux et al., 2015; Frantar et al., 2023;
Lin et al., 2024; Rastegari et al., 2016), knowledge distillation (Gou et al., 2021; Park et al., 2019),
and neural architecture search (Liu et al., 2018; Wang et al., 2020b).

Among these, weight pruning and low-bit quantization are particularly effective and widely adopted
for compressing DNNs (Buciluǎ et al., 2006; Choudhary et al., 2020; Liu et al., 2025). Weight pruning
eliminates redundant or unimportant weights by setting selected weights to zero, thereby reducing the
number of active parameters without significantly altering the model architecture (Dong et al., 2017;
Guo et al., 2016; You et al., 2019). On the other hand, quantization reduces the bit-width of numerical
representations for inputs, outputs, and weights, by converting high-precision formats (e.g., FP32) to
lower-precision alternatives, like FP8 or BF8. This quantization coarsens the model representation and
yields significant reductions in memory footprint and computation overhead. It enhances efficiency
in both training and inference across diverse architectures, including ResNet (Banner et al., 2018),
Transformers (Sun et al., 2019), Large language model (Dettmers et al., 2023; Wang et al., 2025),
and vision-language models (Wortsman et al., 2023).

However, quantization and pruning inevitably introduce distributional shifts from the original
DNNs, often leading to performance degradation (Dong et al., 2022). To mitigate this, existing
methods adopt conservative compression rates, limiting their applicability to resource-constrained
environments (Bai et al., 2023, 2022; Frantar and Alistarh, 2022; Wang et al., 2020b,c). How to
achieve high compression rates while maintaining acceptable performance remains an interesting
question to explore.

Emails: {wang4538,guanglin, qfsong}@purdue.edu, njiang@utep.edu

SQS 2

Dense full-precision DNN Weight distribution Spike-and-GMM distribution

“Spike”

“Slab” distribution

Sparse quantized sub-distribution Spike-and-GMM distributionSparse low-precision DNN

Variational
learning

°6 °4 °2 0 2 4 6

Weights
0.0

0.1

0.2

0.3

0.4

0.5

Fr
eq

ue
nc

y
Weights

Fr
eq

ue
nc

y

Weights

Fr
eq

ue
nc

y
Weights

Figure 1 | Our Sqs method achieves high compression by jointly pruning and quantizing model weights
through variational learning. We employ a spike-and-GMM variational distribution to approximate
full-precision weights: the spike component promotes sparsity for pruning, while the slab component
(i.e., GMM) models a quantized weight distribution, effectively reducing performance degradation.

To tackle the above problem, we introduce a unified framework: SparseQuantized Sub-distribution
(Sqs) compression method, which unifies pruning and quantization within a single variational
learning process. Instead of applying pruning and quantization separately, the key idea of Sqs is
joint pruning and quantization that learns a sparse, quantized sub-distribution over network weights
through variational learning. To model the variational posterior, we adopt a spike-and-slab prior
combined with a Gaussian Mixture Model (GMM): the spike component encourages sparsity for
pruning, while the GMM component models a quantized weight distribution, effectively mitigating
performance degradation. The training pipeline of Sqs is in Figure 1. Theoretically, we show that
under mild conditions, our Sqs method finds a sparse and quantized neural network that converges
to the true underlying target neural network with high probability.

In our experiments, we compare several recent state-of-the-art compression methods across a range
of widely used neural networks, including ResNet, BERT-base, LLaMA3, and Qwen2.5. Our findings
show that (1) Under the same bit-width setting, our Sqs achieves the highest compression rate,
requiring fewer parameters than baselines. (2) At the same compression rate, our Sqs achieves the
smallest accuracy drop or F1 score drop among all approaches, with particularly strong performance
at 2-bit and 4-bit precision.

Further ablation studies highlight the contributions of individual components: (1) The spike-and-
slab distribution is more effective in promoting sparsity than Gaussian alternatives. (2) Bayesian
averaging during inference outperforms greedy decoding. (3) An outlier-aware window strategy
better preserves informative weight outliers compared to uniform windowing, further improving
performance.

2. Preliminaries

Low-bit Quantization uses discrete low-bit values to approximate full-precision floating points,
primarily to reduce precision for more efficient storage and computation while preserving essential
information (Gholami et al., 2022). Formally, it is defined as a mapping 𝑄 : 𝜃 ∈ ℝ→ Q = {𝜇1, . . . 𝜇𝐾},
where 𝜃 is the full-precision weight and Q denotes the set of low-bit discrete values. Representative
quantization methods include deterministic quantization (Jacob et al., 2018), stochastic quantiza-
tion (Courbariaux et al., 2015), and end-to-end learnable quantization (Dong et al., 2022).

SQS 3

Specifically, let 𝜃 = (𝜃1, . . . , 𝜃𝑇) ∈ ℝ𝑇 represent the full-precision weights of a deep neural network,
with 𝜃𝑖 denoting the 𝑖-th weight. Given a quantization set Q = {𝜇1, . . . , 𝜇𝐾}, a general stochastic
quantization is a mapping 𝑄 : 𝜃→ Q, which is

𝑄(𝜃𝑖) = 𝜇𝑘, with probability 𝑝𝑘𝑖,

for 𝑖 = 1, . . . , 𝑇. Here 𝜇𝑘 is the learnable parameter and 𝑝𝑘𝑖 is the corresponding probability for weight
𝜃𝑖 to be quantized to weights 𝜇𝑘. A key challenge is the distribution divergence between the quantized
weights and the original weights, leading to significant performance degradation (Dong et al., 2022).
To mitigate this, (Dong et al., 2022) propose to approximate the quantized weight distribution using
a Gaussian Mixture Model (GMM):

𝑄(𝜃𝑖) ≈
𝐾∑︁
𝑘=1

𝜙𝑘 (𝜃𝑖;𝜋𝑘)N (𝜇𝑘, 𝜎2𝑘), (1)

whereN(𝜇𝑘, 𝜎2𝑘) denotes a Gaussian distribution, and 𝜙𝑘 (𝜃𝑖;𝜋𝑘) is the mixture weight for the Gaussian
components N(𝜇𝑘, 𝜎2𝑘). To control the sharpness of this mixture, a temperature-scaled softmax is
applied to obtain 𝜙𝑘 (𝜃𝑖;𝜋𝑘), that is:

𝜙𝑘 (𝜃𝑖;𝜋𝑘) =
exp (𝜑𝑘 (𝜃𝑖;𝜋𝑘)/𝜏)∑𝐾
𝑗=1 exp

(
𝜑 𝑗 (𝜃𝑖;𝜋 𝑗)/𝜏

) , (2)

where the temperature parameter 𝜏 > 0 controls the concentration of the distribution. As 𝜏→ 0, the
GMM in Equation (1) approaches a single dominant Gaussian component. Given a prior distribution
(𝜋1, . . . , 𝜋𝐾) over the quantization set Q, the posterior component weight 𝜑𝑘 (𝜃𝑖;𝜋𝑘) is:

𝜑𝑘 (𝜃𝑖;𝜋𝑘) =
exp(𝜋𝑘N(𝜃𝑖 |𝜇𝑘, 𝜎2𝑘))∑𝐾
𝑗=1 exp(𝜋 𝑗N(𝜃𝑖 |𝜇 𝑗, 𝜎2𝑗))

.

Additionally, with sufficiently small 𝜎2
𝑘
, the GMM approximates a multinomial distribution over Q,

effectively bridging continuous and discrete quantization. For simplicity, we denote 𝜙𝑘 (𝜃𝑖) as a
shorthand for 𝜙𝑘 (𝜃𝑖;𝜋𝑘) throughout the remainder of this paper.

In our experiments, we find that the GMM-based compression method (Dong et al., 2022) still
cannot achieve a high compression rate while maintaining low-performance drop, as it cannot
efficiently encourage sparsity during training.
Variational learning. Given an observed dataset 𝐷, the goal of a Bayesian framework is to infer

the true posterior distribution 𝜋(𝜃|𝐷) ∝ 𝜋(𝜃)𝑝(𝐷; 𝜃), where 𝜋(𝜃) denotes the prior and 𝑝(𝐷; 𝜃) the
likelihood. Since the posterior is generally intractable, variational learning (Jordan et al., 1999) is
proposed to approximate it by selecting the closest distribution from a variational family F in terms
of the Kullback–Leibler (KL) divergence (Csiszár, 1975):

𝑞∗(𝜃) = argmin
𝑞(𝜃) ∈F

𝐷KL(𝑞(𝜃) ∥ 𝜋(𝜃 | 𝐷)) . (3)

Following (Blei et al., 2017), this optimization is equivalent to minimizing the negative Evidence
Lower Bound (ELBO), defined as:

Ω(𝑞) := −𝔼𝑞(𝜃) [log 𝑝(𝐷; 𝜃)] + 𝐷KL(𝑞(𝜃)∥𝜋(𝜃)), (4)
where the first term measures how well the variational distribution 𝑞(𝜃) aligns with the log-likelihood
of the observed data, and the second term regularizes 𝑞(𝜃) to stay close to the prior 𝜋(𝜃).

Our Sqs method employs a variational family based on a spike-and-GMM distribution to approxi-
mate the sparse and quantized posterior. The first term in Equation (4) allows the spike-and-GMM to
learn the posterior distribution given the data. For the second term, we adopt a slack-and-slab prior
𝜋(·) distribution to promote sparsity in the network weights.

SQS 4

3. Methodology

The objective is to approximate a full-precision neural network 𝑓 (·; 𝜃) with a Bayesian model 𝑓 (·; 𝜃)
that is both sparse and low-precision, while minimizing performance degradation. To achieve this, we
employ a spike-and-slab distribution combined with a GMM to parameterize the variational posterior.

3.1. SQS: Variational learning for sparse and quantized sub-distribution

The spike-and-slab prior consists of a point mass at zero (spike) and a continuous distribution
(slab) (Bai et al., 2020; Ishwaran and Rao, 2005). Formally, let 𝛾 = (𝛾1, . . . , 𝛾𝑇) be a binary indicator
vector, where each 𝛾𝑖 determines whether the corresponding weight 𝜃𝑖 is preserved (𝛾𝑖 = 1) or pruned
(𝛾𝑖 = 0). The prior for each weight 𝜃𝑖 is defined as:

𝜃𝑖 | 𝛾𝑖 ∼ 𝛾𝑖N(0, 𝜎20) + (1 − 𝛾𝑖)𝛿0, 𝛾𝑖 ∼ Bern(𝜆),
where 𝜆 is the prior probability of retaining a weight, and 𝜎20 is the prior variance of the Gaussian
slab. Marginalizing out the binary variable 𝛾𝑖, the prior distribution over 𝜃𝑖 becomes:

𝜋(𝜃𝑖) = 𝜆N(0, 𝜎20) + (1 − 𝜆)𝛿0, (5)
where 1− 𝜆 corresponds to the prior pruning probability. For example, in a DNN with a target sparsity
of 90%, setting 𝜆 = 0.1 implies that each weight has a 90% prior probability of being pruned.

To incorporate quantization into the variational family, we extend the spike-and-slab formulation
by modeling the slab using a 𝐾-component GMM. Each variational distribution 𝑞(𝜃𝑖) is then defined
as:

𝛾𝑖 ∼ Bern(𝜆 𝑖)

𝜃𝑖 |𝛾𝑖 ∼ 𝛾𝑖
𝐾∑︁
𝑘=1

𝜙𝑘 (𝜃𝑖)N (𝜇𝑘, 𝜎2𝑘) + (1 − 𝛾𝑖)𝛿0

where 𝜙𝑘 (𝜃𝑖) is the mixture weight for component 𝑘, and 𝜆 𝑖 is the variational probability of retaining
weight 𝜃𝑖. The marginal variational distribution 𝑞(𝜃𝑖) is:

𝑞(𝜃𝑖) = 𝜆 𝑖

𝐾∑︁
𝑘=1

𝜙𝑘 (𝜃𝑖)N (𝜇𝑘, 𝜎2𝑘) + (1 − 𝜆 𝑖)𝛿0. (6)

Given this variational family, we define the learning objective based on the ELBO:

Ω(𝜃) = −𝔼𝑞(𝜃)
[log 𝑝(𝐷; 𝜃)] + 𝑇∑︁

𝑖=1
𝐷KL

(
𝑞(𝜃𝑖)∥𝜋(𝜃𝑖)

)
. (7)

Yet, computing Equation (7) is intractable, as no closed-form solution exists for the KL divergence
between 𝑞(𝜃𝑖) and the spike-and-slab prior 𝜋(𝜃𝑖). To overcome this challenge, we propose the following
approximation:

Ωapx(𝜃) = log 𝑝
(
𝐷; 𝜆 𝑖

𝐾∑︁
𝑘=1

𝜇𝑘𝜙𝑘 (𝜃𝑖)
)

+
𝑇∑︁
𝑖=1

𝐷KL(Bern(𝜆 𝑖)∥Bern(𝜆 𝑖))

+
𝑇∑︁
𝑖=1

𝜆 𝑖𝐷KL(N (𝜇𝑘∗ , 𝜎2𝑘∗)∥N (0, 𝜎20)), (8)

SQS 5

where 𝑘∗ = argmax1≤𝑘≤𝐾 𝜙𝑘 (𝜃𝑖). The first term is an approximation of the 𝔼𝑞(𝜃) [log 𝑝(𝐷; 𝜃)] in
Equation (7) by replacing 𝑞(𝜃) with the Delta measure at the mean 𝔼[𝜃] = 𝜆 𝑖

∑𝐾
𝑘=1 𝜇𝑘𝜙𝑘 (𝜃𝑖;𝜋, 𝜏). The

second and the third terms provide an upper bound of the term ∑𝑇
𝑖=1 𝐷KL

(
𝑞(𝜃𝑖)∥𝜋(𝜃𝑖)

)
by applying

Lemma 2. A detailed derivation of Equation (8) is in Appendix A.
Inference. In the inference stage, we first sample the sparse and quantizedweight given the learned

parameters and predict the output 𝑦̂ for each testing input 𝑥. Let 𝑞̂(·) denote the optimization solution
of the above variational learning, associated with the optimal parameter estimations {𝜃𝑖, 𝜇𝑖, 𝜎2𝑖 , 𝜆 𝑖}𝑇𝑖=1,
and the corresponding 𝜙𝑘’s (for each 𝜃𝑖) are obtained from Equation (2). Then the 𝑖-th quantized
weight 𝜃𝑖 are sampled from the quantization function:

𝑄(𝜃𝑖) = 𝜇𝑘 with probability 𝜙𝑘 (𝜃𝑖) (9)

Compared to sampling from N(𝜇𝑘, 𝜎2𝑘), posterior sampling in Equation (9) reduces memory consump-
tion.

To enforce sparsity, we introduce a user-specified pruning parameter, the Non-zero rate. Each
weight (𝜃𝑖) is associated with a score (𝜆 𝑖), which reflects the likelihood of being retained. We
deterministically prune by setting the (i)-th weight to zero if (𝜆 𝑖) is smaller than the Non-zero-
quantile of all (𝜆 𝑖) values; otherwise, the weight is kept unchanged. Formally,

𝜃𝑖 =

{
0, if 𝜆 𝑖 < Non-zero quantile of all 𝜆 𝑖,
𝜃𝑖, otherwise.

This deterministic rule provides exact control over the sparsity level, in contrast to stochastic pruning
via posterior sampling (Bai et al., 2020; Sun et al., 2022), which does not guarantee a fixed sparsity
rate and often requires an additional pruning step.
Bayesian averaging. Given a test input 𝑥, the predicted output 𝑦̂ is computed using Bayesian averaging:

𝑦̂ =
1
𝑀

𝑀∑︁
𝑚=1

𝑓 (𝑥; 𝜃𝑚) (10)

where 𝜃𝑚’s are 𝑀 many samples from the sparse quantized sub-distribution. Our ablation study
(Figure 3) shows that Bayesian averaging consistently yields smaller accuracy degradation than the
greedy alternative (Equation 34, Appendix C).
Outlier-aware windowing. Recent studies show that the weight distribution of large language models
(LLMs) often contains significant outliers (Wei et al., 2022). To address this, we use an outlier-aware
windowing strategy to enhance the performance of Sqs. Specifically, the full-precision weights are
partitioned into four groups using window sizes determined by a modified 1.5×Interquartile Range
(IQR) rule (Dekking, 2005), which helps preserve large-magnitude weights during quantization. Each
group is then quantized to 𝐾 representative values. As shown in the ablation study (Figure 2), this
strategy outperforms the approach using equal-sized windows. Implementation details are provided
in Appendix C, and the full procedure is summarized in Algorithm 1 in the Appendix.
Remarks. DGMS (Dong et al., 2022) adopts a mixture of Gaussians, but uses it primarily

as a clustering mechanism. In contrast, our method leverages a principled Bayesian framework
that supports posterior inference and enables Bayesian model averaging, enhancing robustness to
quantization noise. Furthermore, by unifying pruning and quantization within a spike-and-GMM
variational family, our approach creates a joint optimization space that encourages globally optimal
solutions across both pruning and quantization.

SQS 6

3.2. Theoretical Justification of SQS method

For clarity, this section focuses on regression tasks with fully connected neural networks and shows
that the variational posterior of sparse and quantized neural networks, i.e., the optimization of
Equation (7). We show that this variational posterior converges to a true regression function under
some mild conditions.

Consider a regression problem with random covariates,

𝑌𝑖 = 𝑓0(𝑋𝑖) + 𝜀𝑖, for 𝑖 = 1, . . . , 𝑛, (11)

where 𝑓0 : [0, 1] 𝑝 → ℝ is the underlying unknown true function, 𝑋𝑖 ∼ U([0, 1] 𝑝) sample from
𝑝-dimensional uniform distribution, 𝜖𝑖 𝑖𝑖𝑑∼ N(0, 𝜎2𝜖) is the noise term from Gaussian distribution of zero
mean and variance 𝜎2𝜖 . Let 𝑃0 denote the true underlying probability measure of the data, and 𝑝0
denote the corresponding density function. A 𝐿-hidden layer fully connected NNs with constant layer
width 𝑁 and parameters 𝑊𝑖 ∈ ℝ𝑁×𝑁 , 𝑏𝑖 ∈ ℝ𝑁 and activation function 𝜎(·) can be defined as:

𝑓𝜃(𝑋) =𝑊𝐿+1𝜎𝑏𝐿 (𝑊𝐿𝜎𝑏𝐿−1 . . . 𝜎𝑏1 (𝑊1𝑋)) + 𝑏𝐿+1. (12)

For simplicity, 𝜎𝜖 is assumed to be known. Let 𝑠∗ be the “oracle” sparsity level (see Equation 16 in
Appendix B for formal definition) and 𝐻 (𝑇, 𝑠, 𝐾) be the set of network weight parameters such that
the network has a sparsity of 𝑠 and shares at most 𝐾 distinct values. Let 𝑃0 and 𝑃𝜃 be the true data
distribution and the distribution under parameter 𝜃, respectively.

Theorem 1. Let 𝑟∗𝑛 = ((𝐿 + 1)𝑠∗/𝑛) log 𝑁 + (𝑠∗/𝑛 log(𝑝
√︁
𝑛/𝑠∗)), 𝜀∗𝑛 =

√︁
𝑟∗𝑛 log𝛿(𝑛) for any 𝛿 > 1, and

𝜉∗𝑛 = inf𝜃∈𝐻 (𝑇,𝑠,𝐾) ,∥𝜃∥≤𝐵 ∥ 𝑓𝜃 − 𝑓0∥2∞. Then, under mild conditions specified in the supplementary material,
with high probability: ∫

ℝ𝑇

𝑑2(𝑃𝜃, 𝑃0)𝑞̂(𝜃)𝑑𝜃 ≤ 𝐶𝜀∗2𝑛 + 𝐶′(𝑟∗𝑛 + 𝜉∗𝑛), (13)

where 𝑑(·, ·) denotes the Hellinger distance, and 𝐶 and 𝐶′ are some constants.

Sketch of Proof. Based on prior work (Bai et al., 2020), the proof proceeds in two steps. Lemma 4
establishes a high-probability bound on the ELBO in Equation (7). Lemma 5 connects this bound to
the convergence of the variational distribution toward the true full-precision posterior. Together, these
results show that the variational posterior induced by our method converges to the true regression
function with high probability. The full proof is in Appendix B. □

Remark. Similar to previous Bayesian sparse DNN results (Bai et al., 2020; Chérief-Abdellatif,
2020), the convergence rate of variational Bayes is determined by the deep neural network structure
via 1) statistical estimation error 𝜀∗𝑛, 2) variational error 𝑟∗𝑛, and 3) approximation error 𝜉∗𝑛. The first
two positively relate to the network capacity, while the third one negatively relates to the network
capacity. The estimation error 𝜀∗𝑛 and variational error 𝑟∗𝑛 vanish as 𝑛→∞. Prior work (Beknazaryan,
2022) shows that under 𝐵 ≥ 2, 𝐾 ≥ 6, and 𝛽-Hölder smoothness of 𝑓0, the approximation error 𝜉∗𝑛
also vanishes.

While the theoretical analysis mainly considers an 𝐿-hidden layer fully connected NN with constant
layer width 𝑁, our method Sqs is empirically validated on a variety of models such as ResNets, BERT-
based models, and LLMs (refer to Section 5).

SQS 7

4. Related Works

Weight pruningwas initially introduced by (LeCun et al., 1989), with further development by (Hassibi
et al., 1993) through a mathematical method known as the Optimal Brain Surgeon (OBS). This
approach selects weights for removal from a trained neural network using second-order information.
Subsequent improvements, as indicated by studies (Dong et al., 2017; Singh and Alistarh, 2020; Wang
et al., 2019), have adapted OBS for large-scale DNNs by employing numerical techniques to estimate
the second-order information required by OBS. Meanwhile, (Louizos et al., 2018) has introduced
an 𝐿0-regularized method to promote sparsity in DNNs. (Frankle and Carbin, 2019) established a
critical insight that within a randomly initialized DNN, an optimal sub-network can be identified
and extracted. Recently, (Xia et al., 2024) showed that structured pruning combined with targeted
retraining can significantly reduce computational costs while preserving robust performance for large
language models. Concurrently, spike-and-slab distributions have been employed to promote sparsity
in DNNs using Bayesian Neural Networks formulation (Bai et al., 2020; Blundell et al., 2015; Deng
et al., 2019).
Low-bit quantization. Quantization improves DNN efficiency, particularly in resource-constrained
environments (Frantar et al., 2023; Lin et al., 2024, 2025; Sze et al., 2017). Research in this field
typically follows two paradigms: discontinuous-mapping and continuous-mapping quantization.
Discontinuous-mapping methods project full-precision weights onto a low-bit grid using rounding op-
erations (Courbariaux et al., 2015; De Sa et al., 2018; Gupta et al., 2015; Hubara et al., 2018; Louizos
et al., 2019; Marchesi et al., 1993; Wu et al., 2018). The non-differentiability of these mappings neces-
sitates the use of the straight-through estimator (STE) for gradient approximation (Courbariaux and
Bengio, 2016; Rastegari et al., 2016). However, STE-based training may introduce pseudo-gradients,
leading to training instability (Yin et al., 2019). Meanwhile, many researchers propose post-training
quantization methods that have limited access to the training dataset (Frantar and Alistarh, 2022;
Frantar et al., 2023; Hubara et al., 2021; Li et al., 2021; Lin et al., 2024; Wang et al., 2020a).

Continuous-mapping quantization offers an alternative that avoids pseudo-gradients, leading to
more stable training (Nielsen et al., 2025; Yin et al., 2019). These methods often use variational
learning (Louizos et al., 2017; Shayer et al., 2018; Ullrich et al., 2017) or Markov Chain Monte
Carlo techniques (Roth and Pernkopf, 2018) to approximate discrete weight distributions. However,
variational methods often require manual prior specification (Louizos et al., 2017; Shayer et al., 2018;
Ullrich et al., 2017), while MCMC approaches can be memory-intensive (Roth and Pernkopf, 2018).
DGMS (Dong et al., 2022) addresses these limitations through automated quantization using GMMs.
Our work extends DGMS by integrating pruning and quantization into a unified framework, thereby
achieving higher compression rates.

5. Experiments

In this section, we show that our Sqs achieves a much higher compression rate (see the second-to-last
column in Tables 1-3) while incurring a comparable or smaller performance drop (see the last column
in the same tables). Through ablation studies, we further validate that (1) under the same sparsity
level, the spike-and-slab prior more effectively preserves model accuracy (see Table 4). (2) Under
identical hyperparameter settings, we show that Sqs with Bayesian averaging is better than using
the greedy approach (see Figure 3).

SQS 8

Table 1 | For compressing ResNet models, we benchmark all methods evaluated on the CIFAR-10
dataset. Using ResNet-32 and ResNet-56 models, our Sqs consistently achieves higher compression
rates with smaller Top-1 Accuracy drops compared to all baselines.

Re
sN

et
-2
0 Methods Comp. Bits Non-zero Compression Top-1 Accuracy

type rate (%) rate drop
LQNets (Zhang et al., 2018) Q 2 100% 16× 1.20%
DGMS (Dong et al., 2022) P+Q 2 56% 29× 0.87%

Sqs (Ours) P+Q 2 50% 32× 1.47%
(a) Compressing 32Bits ResNet-20 model on CIFAR-10 dataset with Top-1 Accuracy 92.60%.

Re
sN

et
-3
2 Methods Comp. Bits Non-zero Compression Top-1 Accuracy

type rate (%) rate drop
TTQ (Zhu et al., 2017) Q 2 100% 16× 1.90%

DGMS (Dong et al., 2022) P+Q 2 59% 27× 1.30%
Sqs (Ours) P+Q 2 50% 32× 1.29%

(b) Compressing 32Bits ResNet-32 model on CIFAR-10 dataset with Top-1 Accuracy 93.53%.

Re
sN

et
-5
6

Methods Comp. Bits Non-zero Compression Top-1 Accuracy
type rate (%) rate drop

TTQ (Zhu et al., 2017) Q 2 100% 16× 1.06%
L1 (Li et al., 2017) P 32 10% 10× 1.83%

DGMS (Dong et al., 2022) P+Q 2 52% 31× 0.89%
Sqs (Ours) P+Q 2 50% 32× 0.84%

(c) Compressing 32Bits ResNet-56 model on CIFAR-10 dataset with Top-1 Accuracy 94.37%.

5.1. Experiment settings

We evaluate all methods using two metrics: the compression rate and the performance drop (i.e.,
Accuracy drop or F1 score drop). The compression rate is defined as the memory footprint of the
compressed over the original dense full-precision model:

Compression rate =
32

Bits
× 1

Non-zero
, (14)

where Bits indicates the number of low-precision bits needed to represent the model, for Sqs the
Bits is equal to log2(𝐾). Non-zero is the proportion of non-zero weights over the total weights. In
all our experiments, the Non-zero is configured as a hyperparameter to control the sparsity.

To ensure fair comparison, each method is initialized with the same full-precision pre-trained
model and is run with the same set of hyperparameters for compression. All methods are constrained
to a maximum runtime of 24 hours. The resulting compressed models are then evaluated on the
same test sets, and the key performance metrics are summarized in the corresponding tables.

We compare methods of different compression types (the “Comp. type” column): “P+Q” denotes
combined pruning and quantization, “P” denotes pruning only, and “Q” denotes quantization only.
Appendix D provides detailed experimental configurations and baseline settings.

5.2. Experimental analysis

Compression on ResNet models. Table 1 summarizes the result of all methods for compressing
ReNet-18, ReNet-32 and ReNet-56, evaluated on the CIFAR-10 dataset. On compressing the ResNet-18

SQS 9

Table 2 | Compressing 32Bits Bert-base model on SQuADv1.1 dataset with F1 score 88.68%. Our Sqs
achieves higher compression rates with smaller F1 score drops compared to all baselines.

BE
RT

-b
as
e

Methods Comp. Bits Non-zero Compression F1 score
type rate (%) rate drop

GMP (Zhu and Gupta, 2017) P 32 50% 2× 22.89
L-OBS (Dong et al., 2017) P 32 50% 2× 10.86

ExactOBS (Frantar and Alistarh, 2022) P 32 25% 4× 6.43
PLATON (Zhang et al., 2022) P 32 20% 5× 2.20

OBQ (Frantar and Alistarh, 2022) Q 3 100% 11× 3.24
GPTQ (Frantar et al., 2023) Q 3 100% 11× 2.51

OBC (Frantar and Alistarh, 2022) P+Q 4 50% 16× 2.33
Sqs (Ours) P+Q 4 25% 32× 1.66

Table 3 | Compression results for LLAMA3.2 and Qwen2.5 models on the SST-2 dataset. Our Sqs
achieves significantly higher compression rates than AWQ while maintaining comparable (≤ 3%)
performance drops.

Lla
m
a3

.2

Methods Comp. Bits Non-zero Compression Top-1 accuracy
type rate (%) rate drop

AWQ (Lin et al., 2024) P 4 100% 8× 0.46%
DGMS (Dong et al., 2022) P+Q 6 82% 7× 46.67%

Sqs (Ours) P+Q 6 25% 21× 1.48%
(a) Compressing 32Bits Llama3.2-1B model on SST-2 dataset with Top-1 Accuracy 94.72%.

Qw
en

2.
5

Methods Comp. Bits Non-zero Compression Top-1 accuracy
type rate (%) rate drop

AWQ (Lin et al., 2024) P 4 100% 8× 1.54%
DGMS (Dong et al., 2022) P+Q 6 34% 16× 50.80%

Sqs (Ours) P+Q 6 50% 11× 2.46%
(b) Compressing 32Bits Qwen2.5-0.5B model on SST-2 dataset with Top-1 Accuracy 92.60%.

model, our Sqs attains a better compression rate than the baselines. On compressing ResNet-32 and
ResNet-56 models, our Sqs attains substantially higher compression rates while incurring smaller
accuracy drops compared to the baselines. Optimizing pruning and quantization separately overlooks
redundancies in each step; by merging them into a single optimization, we effectively eliminate these
inefficiencies
Compression on BERT-base model. We apply our compression method to the BERT-base

model (Devlin et al., 2019) and evaluate its performance on the SQuAD v1.1 dataset (Rajpurkar et al.,
2016). The evaluation metrics include the F1 score drop and the compression rate. As shown in Ta-
ble 2, our method achieves the lowest F1 score drop and the highest compression rate, outperforming
existing methods. This demonstrates the effectiveness of our Sqs method in preserving accuracy
under aggressive compression.
Compression on Llama and Qwen models. In Table 3, we compare our method Sqs with others

on the SST2 task in the GLUE benchmark using Llama3.2-1B and Qwen2.5-0.5B models, as our
method could preserve the weights outliers, which are crucial in maintaining the performance (Lin

SQS 10

Table 4 | Impact of the Gaussian prior and the spike-and-slab prior, for compressing a 32 bits ResNet-18
model on the CIFAR-100 dataset with Top-1 Accuracy 79.26%. The spike-and-slab prior used in our
Sqs consistently yields better performance than the Gaussian prior across all sparsity-level settings.

Re
sN

et
-1
8 Bits Non-zero (%) Compression rate Top-1 Accuracy drop

Gaussian prior Spike-and-slab prior (Ours)
4 50% 16× 4.51% 3.12%
4 40% 20× 5.60% 3.21%
4 30% 27× 11.42% 5.54%
4 20% 40× 44.04% 5.59%

−0.2 0.0 0.2
Weights value

0

5

10

15

20

D
en

si
ty

−0.2 0.0 0.2
Weights value

0

5

10

15

20

−0.4 −0.2
Weights value

0

2

4

6

×10−3

Full-precision weights SQS with outlier-aware windows SQS with equal windows 1.5×IQR

Figure 2 | Impact of different window strategies. For the compressed weight distributions in the first
attention layer of the Llama3.2-1B model, Sqs with outlier-aware window strategy (left) yields better
preservation of the full-precision weight distribution compared to the equal-sized window (middle).
This advantage is also evident in the left tail region shown in (right). Weight visualization of layers of
Llama3.2-1B and Qwen2.5 is provided in the Appendix E.

et al., 2024). We further observe a big performance drop of the DGMS (Dong et al., 2022) method for
compressing Llama3.2-1B and Qwen2.5-0.5B, which occurs because the attention weights distribution
is not Gaussian (see Figure 2(left)), and it fails to capture large magnitude weights. Furthermore,
DGMS doesn’t allow customization of the sparsity level, thus it presents an unreasonable performance
drop.

5.3. Ablation studies for Sqs method

Impact of different priors. We evaluate the impact of the choices of prior—specifically, the Gaussian
prior vs. the spike-and-slab prior—on model performance. Please see Appendix D.2 for detailed setup
on the Gaussian prior. The task involves compressing a ResNet-18 model at varying sparsity levels
by representing each layer’s weights using 𝐾 = 16 components and evaluating performance on the
CIFAR-100 dataset. In Table 4, the spike-and-slab prior consistently outperforms the Gaussian prior
across all sparsity levels. Notably, the Gaussian prior leads to significantly degraded performance
under high sparsity, suggesting its limitation in inducing effective posterior sparsity in DNN weights.
Impact of different window strategies. We use the first attention layer weights in the Llama3.2-

1B model as the case study. The full-precision weights exhibit a long-tail distribution, where a fraction
of weights have large magnitudes. Based on this observation, we further introduce an outlier-aware
window strategy to fit the full-precision weights distribution. As shown in Figure 2 (left) and (middle),
the quantized weight generated from Sqs with the outlier-aware window strategy matches the
distribution better than using the equal window strategy. In Figure 2 (right), The Sqs with an outlier-

SQS 11

8 10 12 14 16

#Gaussian Components

78.0

78.5

79.0
A

cc
ur

ac
y

(%
)

8 10 12 14 16

#Gaussian Components

80.0

80.5

81.0

SQS with
Last iterate

SQS with
Bayesian average

Full-precision
Base model

Figure 3 | Comparison of inference accuracy on the CIFAR-100 dataset using ResNet-18 (left) and
ResNet-50 (right). Under the same number of Gaussian components, Sqs with Bayesian averaging (in
Equation 10) results in a smaller accuracy drop compared to using a greedy approach (in Equation 34).

aware window strategy matches the distribution at the tails better than using the equal window
strategy. More results on the rest of the layers’ weight distribution are provided in the Appendix E.
Impact of different inference strategies. We evaluate the effectiveness of two inference strate-

gies—Bayesian averaging and greedy approach, as defined in Equation (10)—within our Sqs frame-
work. To ensure a fair comparison, we assess the performance of compressing ResNet-18 and
ResNet-50 models while varying the number of Gaussian components. The sparsity level is fixed
to zero (i.e., no pruning), so that all performance degradation arises purely from quantization. As
shown in Figure 3, using fewer components results in a larger accuracy drop. Under the same number
of components, Sqs with Bayesian averaging consistently achieves a smaller accuracy drop compared
to the greedy approach strategy.

6. Conclusion

In this paper, we proposed a unified framework for compressing full-precision DNNs by combining
pruning and quantization into one integrated optimization process through variational learning.
Unlike conventional approaches that apply pruning and quantization sequentially—often resulting in
suboptimal solutions—our method jointly explores a broader solution space, achieving significantly
higher compression rates with comparable performance degradation. To address the intractability of
the original objective, we introduce an efficient approximation that enables scalable optimization.
We evaluate our method across a range of benchmarks, including ResNets, BERT-base, Llama3, and
Qwen2.5.

Experimental results demonstrate that our approach consistently outperforms existing baselines
in compression rate while maintaining competitive accuracy, highlighting its potential for efficient
deployment in resource-constrained environments.

References

Jincheng Bai, Qifan Song, and Guang Cheng. Efficient variational inference for sparse deep learning
with theoretical guarantee. In NeurIPS, volume 33, pages 466–476, 2020.

SQS 12

Shipeng Bai, Jun Chen, Xintian Shen, Yixuan Qian, and Yong Liu. Unified data-free compression:
Pruning and quantization without fine-tuning. In ICCV, pages 5876–5885, 2023.

Yue Bai, Huan Wang, Zhiqiang Tao, Kunpeng Li, and Yun Fu. Dual lottery ticket hypothesis. In ICLR,
2022.

Ron Banner, Itay Hubara, Elad Hoffer, and Daniel Soudry. Scalable methods for 8-bit training of
neural networks. NeurIPS, 31:5151–5159, 2018.

Aleksandr Beknazaryan. Function approximation by deep neural networks with parameters {0,±1
2,±1, 2}. Journal of Statistical Theory and Practice, 16(1):7, 2022.

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for statisticians.
Journal of the American statistical Association, 112(518):859–877, 2017.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in
neural network. In ICML, pages 1613–1622, 2015.

Stephane Boucheron, Gabor Lugosi, and Pascal Massart. Concentration inequalities: A nonasymptotic
theory of independence. Oxford University press, 2013.

Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In ICDM, pages
535–541, 2006.

Badr-Eddine Chérief-Abdellatif. Convergence rates of variational inference in sparse deep learning.
In ICML, pages 1831–1842, 2020.

Badr-Eddine Chérief-Abdellatif and Pierre Alquier. Consistency of variational bayes inference for
estimation and model selection in mixtures. Electronic Journal of Statistics, 12(2):2995 – 3035,
2018.

Tejalal Choudhary, Vipul Mishra, Anurag Goswami, and Jagannathan Sarangapani. A comprehensive
survey on model compression and acceleration. Artificial Intelligence Review, 53:5113–5155, 2020.

Matthieu Courbariaux and Yoshua Bengio. Binarynet: Training deep neural networks with weights
and activations constrained to +1 or -1. CoRR, abs/1602.02830, 2016.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep neural
networks with binary weights during propagations. NeurIPS, 28:3123–3131, 2015.

Imre Csiszár. I-divergence geometry of probability distributions and minimization problems. The
annals of probability, pages 146–158, 1975.

Christopher De Sa, Megan Leszczynski, Jian Zhang, Alana Marzoev, Christopher R Aberger,
Kunle Olukotun, and Christopher Ré. High-accuracy low-precision training. arXiv preprint
arXiv:1803.03383, 2018.

Frederik Michel Dekking. A Modern Introduction to Probability and Statistics: Understanding why and
how. Springer Science & Business Media, 2005.

Wei Deng, Xiao Zhang, Faming Liang, and Guang Lin. An adaptive empirical bayesian method for
sparse deep learning. In NeurIPS, volume 32, pages 5564–5574, 2019.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning of
quantized llms. In NeurIPS, 2023.

SQS 13

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. In NAACL, pages 4171–4186, 2019.

Runpei Dong, Zhanhong Tan, Mengdi Wu, Linfeng Zhang, and Kaisheng Ma. Finding the task-optimal
low-bit sub-distribution in deep neural networks. In ICML, pages 5343–5359. PMLR, 2022.

Xin Dong, Shangyu Chen, and Sinno Pan. Learning to prune deep neural networks via layer-wise
optimal brain surgeon. NeurIPS, 30:4857–4867, 2017.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In ICLR, 2019.

Elias Frantar and Dan Alistarh. Optimal brain compression: A framework for accurate post-training
quantization and pruning. NeurIPS, 35:4475–4488, 2022.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. OPTQ: Accurate quantization for
generative pre-trained transformers. In The Eleventh ICLR, 2023.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. A survey
of quantization methods for efficient neural network inference. In Low-power computer vision, pages
291–326. Chapman and Hall/CRC, 2022.

Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge distillation: A survey.
International Journal of Computer Vision, 129(6):1789–1819, 2021.

Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network surgery for efficient dnns. NeurIPS, 29:
1379–1387, 2016.

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learning with
limited numerical precision. In ICML, pages 1737–1746, 2015.

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural network
with pruning, trained quantization and huffman coding. In ICLR, 2016.

Babak Hassibi, David G Stork, and Gregory J Wolff. Optimal brain surgeon and general network
pruning. In IEEE international conference on neural networks, pages 293–299. IEEE, 1993.

John R. Hershey and Peder A. Olsen. Approximating the kullback leibler divergence between gaussian
mixture models. In IEEE International Conference on Acoustics, Speech, and Signal Processing, pages
317–320. IEEE, 2007.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Quantized
neural networks: Training neural networks with low precision weights and activations. Journal of
Machine Learning Research, 18(187):1–30, 2018.

Itay Hubara, Yury Nahshan, Yair Hanani, Ron Banner, and Daniel Soudry. Accurate post training
quantization with small calibration sets. In ICML, pages 4466–4475, 2021.

Hemant Ishwaran and J Sunil Rao. Spike and slab variable selection: frequentist and bayesian
strategies. Annals of Statistics, 33:730–73, 2005.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig
Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for efficient
integer-arithmetic-only inference. In CVPR, pages 2704–2713, 2018.

SQS 14

Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An introduction to
variational methods for graphical models. Machine learning, 37:183–233, 1999.

Tanishq Kumar, Zachary Ankner, Benjamin Frederick Spector, Blake Bordelon, Niklas Muennighoff,
Mansheej Paul, Cengiz Pehlevan, Christopher Re, and Aditi Raghunathan. Scaling laws for precision.
In ICLR, 2025.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. NeurIPS, 2:598–605, 1989.
Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for efficient

convnets. In ICLR, 2017.
Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei Wang, and Shi Gu.
{BRECQ}: Pushing the limit of post-training quantization by block reconstruction. In ICLR, 2021.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. AWQ: activation-aware weight quantization
for on-device LLM compression and acceleration. In Annual Conference on Machine Learning and
Systems, 2024.

Moule Lin, Shuhao Guan, Weipeng Jing, Goetz Botterweck, and Andrea Patane. Stochastic weight
sharing for bayesian neural networks. In AISTATS, volume 258 of Proceedings of Machine Learning
Research, pages 4519–4527. PMLR, 2025.

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan
Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In ECCV, pages
19–34, 2018.

Kai Liu, Qian Zheng, Kaiwen Tao, Zhiteng Li, Haotong Qin, Wenbo Li, Yong Guo, Xianglong Liu,
Linghe Kong, Guihai Chen, Yulun Zhang, and Xiaokang Yang. Low-bit model quantization for deep
neural networks: A survey, 2025. URL https://arxiv.org/abs/2505.05530.

Christos Louizos, Karen Ullrich, and Max Welling. Bayesian compression for deep learning. In NeurIPS,
volume 30, pages 3288–3298, 2017.

Christos Louizos, Max Welling, and Diederik P. Kingma. Learning sparse neural networks through 𝑙0
regularization. In ICLR, 2018.

Christos Louizos, Matthias Reisser, Tijmen Blankevoort, Efstratios Gavves, and Max Welling. Relaxed
quantization for discretized neural networks. In ICLR, 2019.

Michele Marchesi, Gianni Orlandi, Francesco Piazza, and Aurelio Uncini. Fast neural networks without
multipliers. IEEE transactions on Neural Networks, 4(1):53–62, 1993.

Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen Blankevoort. Up or
down? adaptive rounding for post-training quantization. In ICML, pages 7197–7206, 2020.

Jacob Nielsen, Peter Schneider-Kamp, and Lukas Galke. Continual quantization-aware pre-training:
When to transition from 16-bit to 1.58-bit pre-training for bitnet languagemodels? In ACL (Findings),
pages 13483–13493. Association for Computational Linguistics, 2025.

Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho. Relational knowledge distillation. In CVPR, pages
3967–3976, 2019.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing by generative pre-training. 2018.

https://arxiv.org/abs/2505.05530

SQS 15

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100, 000+ questions for
machine comprehension of text. In EMNLP, pages 2383–2392, 2016.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In ECCV, pages 525–542. Springer, 2016.

Wolfgang Roth and Franz Pernkopf. Bayesian neural networks with weight sharing using dirichlet
processes. IEEE transactions on pattern analysis and machine intelligence, 42(1):246–252, 2018.

Oran Shayer, Dan Levi, and Ethan Fetaya. Learning discrete weights using the local reparameterization
trick. In ICLR, 2018. URL https://openreview.net/forum?id=BySRH6CpW.

Sidak Pal Singh and Dan Alistarh. Woodfisher: Efficient second-order approximation for neural
network compression. In NeurIPS, volume 33, pages 18098–18109, 2020.

Xiao Sun, Jungwook Choi, Chia-Yu Chen, Naigang Wang, Swagath Venkataramani, Vijayalakshmi Viji
Srinivasan, Xiaodong Cui, Wei Zhang, and Kailash Gopalakrishnan. Hybrid 8-bit floating point
(hfp8) training and inference for deep neural networks. NeurIPS, 32:4901–4910, 2019.

Yan Sun, Qifan Song, and Faming Liang. Consistent sparse deep learning: Theory and computation.
Journal of the American Statistical Association, 117(540):1981–1995, 2022.

Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. Efficient processing of deep neural
networks: A tutorial and survey. Proceedings of the IEEE, 105(12):2295–2329, 2017.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient
foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Karen Ullrich, Edward Meeds, and Max Welling. Soft weight-sharing for neural network compression.
In ICLR, 2017.

Chaoqi Wang, Roger Grosse, Sanja Fidler, and Guodong Zhang. Eigendamage: Structured pruning in
the kronecker-factored eigenbasis. In ICML, pages 6566–6575, 2019.

Peisong Wang, Qiang Chen, Xiangyu He, and Jian Cheng. Towards accurate post-training network
quantization via bit-split and stitching. In ICML, pages 9847–9856, 2020a.

Ruizhe Wang, Yeyun Gong, Xiao Liu, Guoshuai Zhao, Ziyue Yang, Baining Guo, Zheng-Jun Zha, and
Peng CHENG. Optimizing large language model training using FP4 quantization. In ICLR, 2025.

Tianzhe Wang, Kuan Wang, Han Cai, Ji Lin, Zhijian Liu, Hanrui Wang, Yujun Lin, and Song Han. Apq:
Joint search for network architecture, pruning and quantization policy. In CVPR, pages 2078–2087,
2020b.

Ying Wang, Yadong Lu, and Tijmen Blankevoort. Differentiable joint pruning and quantization for
hardware efficiency. In ECCV, pages 259–277, 2020c.

Xiuying Wei, Yunchen Zhang, Xiangguo Zhang, Ruihao Gong, Shanghang Zhang, Qi Zhang, Fengwei
Yu, and Xianglong Liu. Outlier suppression: Pushing the limit of low-bit transformer language
models. In NeurIPS, 2022.

Mitchell Wortsman, Tim Dettmers, Luke Zettlemoyer, Ari Morcos, Ali Farhadi, and Ludwig Schmidt.
Stable and low-precision training for large-scale vision-language models. NeurIPS, 36:10271–10298,
2023.

https://openreview.net/forum?id=BySRH6CpW

SQS 16

Shuang Wu, Guoqi Li, Feng Chen, and Luping Shi. Training and inference with integers in deep
neural networks. arXiv preprint arXiv:1802.04680, 2018.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared LLaMA: Accelerating language
model pre-training via structured pruning. In ICLR, 2024.

Canwen Xu, Wangchunshu Zhou, Tao Ge, Furu Wei, and Ming Zhou. Bert-of-theseus: Compressing
BERT by progressive module replacing. In EMNLP, pages 7859–7869, 2020.

Penghang Yin, Jiancheng Lyu, Shuai Zhang, Stanley J. Osher, Yingyong Qi, and Jack Xin. Understand-
ing straight-through estimator in training activation quantized neural nets. In ICLR, 2019.

Zhonghui You, Kun Yan, Jinmian Ye, Meng Ma, and Ping Wang. Gate decorator: Global filter pruning
method for accelerating deep convolutional neural networks. NeurIPS, 32:2130–2141, 2019.

Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang Hua. Lq-nets: Learned quantization for
highly accurate and compact deep neural networks. In ECCV, pages 365–382, 2018.

Qingru Zhang, Simiao Zuo, Chen Liang, Alexander Bukharin, Pengcheng He, Weizhu Chen, and
Tuo Zhao. Platon: Pruning large transformer models with upper confidence bound of weight
importance. In ICML, pages 26809–26823, 2022.

Chenzhuo Zhu, Song Han, Huizi Mao, and William J. Dally. Trained ternary quantization. In ICLR,
2017.

Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for model
compression. arXiv preprint arXiv:1710.01878, 2017.

Contents

1 Introduction 1

2 Preliminaries 2

3 Methodology 4
3.1 SQS: Variational learning for sparse and quantized sub-distribution 4
3.2 Theoretical Justification of SQS method . 6

4 Related Works 7

5 Experiments 7
5.1 Experiment settings . 8
5.2 Experimental analysis . 8
5.3 Ablation studies for Sqs method . 10

6 Conclusion 11

A Derivation of Approximate Objective 18
A.1 An upper bound on the KL divergence between two mixtures 18
A.2 Derivation of Approximate Objective . 18

B Proof of Theorem 1 21
B.1 Proof of Lemma 4 . 24
B.2 Proof of Lemma 5 . 31

C Implementation of Sqs 33

D Experiment Settings 36
D.1 Experiment settings for benchmark with all baselines 36
D.2 Experiment settings for ablation studies for Sqs method 36

E Experiment Results for Full-precision Weight Distribution Visualization 38

17

SQS 18

A. Derivation of Approximate Objective

A.1. An upper bound on the KL divergence between two mixtures

To simplify the ELBO and validate our approach, we reformulate a key lemma from previous work
(Chérief-Abdellatif and Alquier, 2018, Lemma 6.1). It is a tool widely used in signal processing (Her-
shey and Olsen, 2007). We provide the proof for the sake of completeness.

Lemma 2 (From Lemma 6.1 in (Chérief-Abdellatif and Alquier, 2018)). For any 𝐾 > 0, the KL
divergence between any two mixture densities

∑𝐾
𝑘=1𝑤𝑘𝑔𝑘 and

∑𝐾
𝑘=1 𝑤̃𝑘 𝑔̃𝑘 is upper bounded by

𝐷KL

(
𝐾∑︁
𝑘=1

𝑤𝑘𝑔𝑘

 𝐾∑︁
𝑘=1

𝑤̃𝑘 𝑔̃𝑘

)
≤

𝐾∑︁
𝑘=1

𝑤𝑘𝐷KL(𝑔𝑘∥ 𝑔̃𝑘) +
𝐾∑︁
𝑘=1

𝑤𝑘 log
(
𝑤𝑘

𝑤̃𝑘

)
Proof. We expand the KL divergence term by its definition, thus it could have the following:

𝐷KL

(
𝐾∑︁
𝑘=1

𝑤𝑘𝑔𝑘

 𝐾∑︁
𝑘=1

𝑤̃𝑘 𝑔̃𝑘

)
=

∫ (
𝐾∑︁
𝑘=1

𝑤𝑘𝑔𝑘

)
log

(∑𝐾
𝑘=1𝑤𝑘𝑔𝑘∑𝐾
𝑘=1 𝑤̃𝑘 𝑔̃𝑘

)
≤

∫ 𝐾∑︁
𝑘=1

𝑤𝑘𝑔𝑘 log
(
𝑤𝑘𝑔𝑘

𝑤̃𝑘 𝑔̃𝑘

)
=

∫ 𝐾∑︁
𝑘=1

𝑤𝑘𝑔𝑘 log
(
𝑔𝑘

𝑔̃𝑘

)
+

∫ 𝐾∑︁
𝑘=1

𝑤𝑘𝑔𝑘 log
(
𝑤𝑘

𝑤̃𝑘

)
=

𝐾∑︁
𝑘=1

𝑤𝑘

∫
𝑔𝑘 log

(
𝑔𝑘

𝑔̃𝑘

)
+

𝐾∑︁
𝑘=1

𝑤𝑘 log
(
𝑤𝑘

𝑤̃𝑘

) (∫
𝑔𝑘

)
=

𝐾∑︁
𝑘=1

𝑤𝑘𝐷KL(𝑔𝑘∥ 𝑔̃𝑘) +
𝐾∑︁
𝑘=1

𝑤𝑘 log
(
𝑤𝑘

𝑤̃𝑘

)
,

where the first inequality is due to the Jensen inequality and the convexity of the function 𝑥 log(𝑥).
This completes the proof. □

A.2. Derivation of Approximate Objective

We aim to approximate the ELBO objective:

Ω(𝜃) = −𝔼𝑞(𝜃) [log 𝑝(𝐷; 𝜃)]︸ ︷︷ ︸
Part 1

+
𝑇∑︁
𝑖=1

𝐷KL
(
𝑞(𝜃𝑖)∥𝜋(𝜃𝑖)

)
. (15)

where 𝜋(𝜃𝑖) is defined in Equation (5) and 𝑞(𝜃𝑖) is defined in Equation (6):

𝑞(𝜃𝑖) = 𝜆 𝑖

𝐾∑︁
𝑘=1

𝜙𝑘 (𝜃𝑖)N (𝜇𝑘, 𝜎2𝑘) + (1 − 𝜆 𝑖)𝛿0,

𝜋(𝜃𝑖) = 𝜆N(0, 𝜎20) + (1 − 𝜆)𝛿0.

It is important to note that the KL divergence between the variational distribution and the spike-and-
slab prior distribution does not have a closed-form solution.

SQS 19

Step 1: Approximate the expected log-likelihood.

The first term 𝔼𝑞(𝜃) [log 𝑝(𝐷; 𝜃)] can be expensive to compute, due to the sampling over spike-and-slab
distribution. A tractable approximation is to replace the expectation with the log-likelihood at the
mean parameter: 𝔼𝑞(𝜃) [log 𝑝(𝐷; 𝜃)] ≈ log 𝑝(𝐷;𝔼𝑞(𝜃) [𝜃]). Since,

𝔼𝑞(𝜃) [𝜃] = 𝜆 𝑖

𝐾∑︁
𝑘=1

𝜇𝑘𝜙𝑘 (𝜃𝑖) + (1 − 𝜆 𝑖) ∗ 0 = 𝜆 𝑖

𝐾∑︁
𝑘=1

𝜇𝑘𝜙𝑘 (𝜃𝑖),

We then have:
Part 1 ≈ log 𝑝

(
𝐷; 𝜆 𝑖

𝐾∑︁
𝑘=1

𝜇𝑘𝜙𝑘 (𝜃𝑖)
)
.

Step 2: Upper Bound KL between spike-and-slab distributions.

The KL divergence between the marginal variational posterior and the prior is intractable due to the
presence of both the Dirac delta and the mixture components. To upper-bound the KL divergence
between them, we apply Lemma 2 by matching component structure:

𝐷KL(𝑞∥𝜋) ≤
2∑︁
𝑗=1

𝑤 𝑗𝐷KL(𝑔 𝑗∥ 𝑔̃ 𝑗) +
2∑︁
𝑗=1

𝑤 𝑗 log
(
𝑤 𝑗

𝑤̃ 𝑗

)
,

with 𝑤1 = 𝜆 𝑖, 𝑔1 =

𝐾∑︁
𝑘=1

𝜙𝑘 (𝜃𝑖)N (𝜇𝑘, 𝜎2𝑘), 𝑤̃1 = 𝜆, 𝑔̃1 =N(0, 𝜎20)

𝑤2 = 1 − 𝜆 𝑖, 𝑔2 = 𝛿0, 𝑤̃2 = 1 − 𝜆, 𝑔̃2 = 𝛿0

Substituting into the bound, we obtain:

𝐷KL(𝑞(𝜃𝑖)∥𝜋(𝜃𝑖)) ≤𝜆 𝑖𝐷KL

(
𝐾∑︁
𝑘=1

𝜙𝑘 (𝜃𝑖)N (𝜇𝑘, 𝜎2𝑘)

N(0, 𝜎20)) + (1 − 𝜆 𝑖) 𝐷KL(𝛿0∥𝛿0)︸ ︷︷ ︸

=0

+ 𝜆 𝑖 log
𝜆 𝑖

𝜆
+ (1 − 𝜆 𝑖) log

1 − 𝜆 𝑖
1 − 𝜆 .

Combining the terms, we have:

𝐷KL(𝑞(𝜃𝑖)∥𝜋(𝜃𝑖)) ≤ 𝜆 𝑖𝐷KL

(
𝐾∑︁
𝑘=1

𝜙𝑘 (𝜃𝑖)N (𝜇𝑘, 𝜎2𝑘)

N(0, 𝜎20)) + 𝐷KL(Bern(𝜆 𝑖)∥Bern(𝜆)),

Note that the first term on the right-hand side, which is the KL divergence between the GMM and the
Gaussian distribution, does not have a closed form. But it can be further upper-bounded as:

𝐷KL

(
𝐾∑︁
𝑘=1

𝜙𝑘 (𝜃𝑖)N (𝜇𝑘, 𝜎2𝑘)

N(0, 𝜎20)) = 𝐷KL

(
𝐾∑︁
𝑘=1

𝜙𝑘 (𝜃𝑖)N (𝜇𝑘, 𝜎2𝑘)

 𝐾∑︁
𝑘=1

𝜙𝑘 (𝜃𝑖)N (0, 𝜎20)
)

≤
𝐾∑︁
𝑘=1

𝜙𝑘 (𝜃𝑖)𝐷KL
(
N(𝜇𝑘, 𝜎2𝑘)∥N (0, 𝜎20)

)
+

𝐾∑︁
𝑘=1

𝜙𝑘 (𝜃𝑖) log
(
𝜙𝑘 (𝜃𝑖)
𝜙𝑘 (𝜃𝑖)

)
︸ ︷︷ ︸

=0

SQS 20

=

𝐾∑︁
𝑘=1

𝜙𝑘 (𝜃𝑖)𝐷KL
(
N(𝜇𝑘, 𝜎2𝑘)∥N (0, 𝜎20)

)
︸ ︷︷ ︸

Part 2

,

where the inequality is obtained by Lemma 2. Empirically, we approximate the mixture KL by
evaluating only the dominant component:

Part 2 ≈ 𝐷KL(N (𝜇𝑘∗ , 𝜎2𝑘∗)∥N (0, 𝜎20)), where 𝑘∗ = argmax
𝑘

𝜙𝑘 (𝜃𝑖)

where we approximate the inner sum over 𝑘 using the maximum-weight component, which is the
𝑘∗-th component.

As a small temperature is needed to avoid a flat posterior distribution, which could introduce
large differences between the training phase and inference phase.

Finally, putting all approximations together, we obtain:

Ωapx(𝜃) =− log 𝑝
(
𝐷; 𝜆 𝑖

𝐾∑︁
𝑘=1

𝜇𝑘𝜙𝑘 (𝜃𝑖;𝜋, 𝜏)
)

+
𝑇∑︁
𝑖=1

𝐷KL(Bern(𝜆 𝑖)∥Bern(𝜆))

+
𝑇∑︁
𝑖=1

𝜆 𝑖𝐷KL(N (𝜇𝑘∗ , 𝜎2𝑘∗)∥N (0, 𝜎20)), where 𝑘∗ = argmax
1≤𝑘≤𝐾

𝜙𝑘 (𝜃𝑖).

which is the result shown in Equation (8).

SQS 21

B. Proof of Theorem 1

Consider a 𝐿-hidden layer fully connected neural network with the ReLU activation function 𝜎𝑏 :
ℝ𝑑 → ℝ𝑑 defined as 𝜎𝑏(𝑋) = max{0, 𝑋 − 𝑏} on some dimension 𝑑 and parameter 𝑏. The number of
neurons in each layer is defined as 𝑝𝑖 for 𝑖 = 1, . . . , 𝐿. The weights and biases are denoted as the
𝑊𝑖 ∈ ℝ𝑁×𝑁 and 𝑏𝑖 ∈ ℝ𝑁 . Thus given the parameters p = (𝑝1, · · · , 𝑝𝐿) and let 𝜃 denote the vector
obtained by stacking all entries of the weight matrices𝑊𝑖 and bias vectors 𝑏𝑖, then the fully connected
network can be presented as:

𝑓𝜃(𝑋) =𝑊𝐿+1𝜎𝑏𝐿 (𝑊𝐿𝜎𝑏𝐿−1 . . . 𝜎𝑏1 (𝑊1𝑋)) + 𝑏𝐿+1.

The DNN 𝑓𝜃 also introduces a probability measure of the data, which we denote as 𝑃𝜃, and 𝑝𝜃 is the
corresponding density function, 𝑝𝜃(𝐷) would be the likelihood of the data 𝐷.

One can define the sparse parameter space with sparsity parameter 𝑠 as {𝜃 ∈ ℝ : ∥𝜃∥0 < 𝑠}, where
𝜃 has only 𝑠 many non-zero entries. Then we can further introduce the sparse and quantized weights
space 𝐻 (𝑇, 𝑠, 𝐾) as follows:

I(𝑇, 𝑠, 𝐾) = {𝐼 = [𝑟1, . . . , 𝑟𝑇]⊤ | ∥ 𝐼∥0 ≤ 𝑠, 𝑟𝑖 ∈ {0, 1}𝐾 , ∥𝑟𝑖∥0 ≤ 1},
𝐻 (𝑇, 𝑠, 𝐾) =

{
𝜃 ∈ ℝ𝑇 |𝜃 = 𝐼 · 𝐸, 𝐸 ∈ [−𝐵, 𝐵]𝐾 , 𝐼 ∈ I(𝑇, 𝑠, 𝐾)

}
,

where 𝐵 is some constant satisfies 𝐵 > 2 and I(𝑇, 𝑠, 𝐾) is the indexing space, each element 𝐼 ∈ I(𝑇, 𝑠, 𝐾)
consists of 𝑠 many 𝐾-dimension one-hot rows, and the rest 𝑇 − 𝑠 rows are zero vectors indicating the
corresponding weight is pruned. In such a way, any 𝜃 ∈ 𝐻 (𝑇, 𝑠, 𝐾) satisfies that ∥𝜃∥0 ≤ 𝑠 and 𝜃 only
have 𝐾 many distinct entry values then the DNN 𝑓𝜃(·) = 𝑓 (·; 𝜃) is sparse and quantized. The following
conditions are assumed, similarly to (Bai et al., 2020):
Condition B.1. 𝑝𝑖 ≡ 𝑁 ∈ ℤ+ that can depend on n, and lim𝑇 =∞.

Condition B.2. 𝜎(𝑥) is 1-Lipschitz continuous.

Condition B.3. The hyperparameter 𝜎20 is set to be some constant, and 𝜆 satisfies

log
(1
𝜆

)
= 𝑂

(
(𝐿 + 1) log 𝑁 + log(𝑝

√︁
𝑛/𝑠∗)

)
log

(1
1 − 𝜆

)
= 𝑂

(
𝑠∗

𝑇

(
(𝐿 + 1) log 𝑁 + log(𝑝

√︁
𝑛/𝑠∗)

))
Condition B.4. max{𝑠∗ log(𝑝

√︁
𝑛/𝑠∗, (𝐿 + 1)𝑠∗ log 𝑁} = 𝑜(𝑛) and 𝑟∗𝑛 ≍ 𝜉∗𝑛.

where the “oracle” sparsity 𝑠∗ is defined in Equation (16).
Definition 1. The true function 𝑓0 defined in Equation 11 is 𝛽-Hölder continuous if

𝑓0 ∈ C𝛽𝑑 (𝑀) =
{
𝑓 : [0, 1] 𝑝 → ℝ :

∑︁
𝛼: |𝛼 |<𝛽

∥𝜕𝛼 𝑓 ∥∞ +
∑︁

𝛼:𝛼=⌊𝛽⌋
sup

𝑥,𝑦∈ [0,1]𝑝
𝑥≠𝑦

|𝜕𝛼 𝑓 (𝑥) − 𝜕𝛼 𝑓 (𝑦) |
|𝑥 − 𝑦 |𝛽−⌊𝛽⌋∞

≤ 𝑀
}
.

for some constant 𝑀 > 0.

Following previous paper (Bai et al., 2020), we define:

𝑠∗ = argmin
𝑠
{𝑟𝑛(𝐿, 𝑝, 𝑠) + 𝜉𝑛(𝐿, 𝑝, 𝑠)} (16)

SQS 22

where

𝑟𝑛(𝐿, 𝑝, 𝑠) = ((𝐿 + 1)𝑠/𝑛) log 𝑁 + (𝑠/𝑛) log(𝑝
√︁
𝑛/𝑠)

𝜉𝑛(𝐿, 𝑝, 𝑠) = inf
𝜃∈𝐻 (𝑇,𝑠,𝐾) ,∥𝜃∥∞≤𝐵

∥ 𝑓𝜃 − 𝑓0∥2∞.

Correspondingly, we define 𝑟∗𝑛 = 𝑟𝑛(𝐿, 𝑝, 𝑠∗), 𝜉∗𝑛 = 𝜉𝑛(𝐿, 𝑝, 𝑠∗).
In this section, we reformulate the variational distribution by introducing a latent index variable.

For any 𝑞(𝜃) ∈ F , it has the following equivalent form:

𝜃𝑖 |𝑧𝑖, 𝛾𝑖 ∼ 𝛾𝑖
𝐾∑︁
𝑘=1

1{𝑧𝑖 = 𝑘}N (𝜇𝑘, 𝜎2𝑘) + (1 − 𝛾𝑖)𝛿0, (17)

𝑧𝑖 ∼ Categorical(𝜙1(𝜃𝑖), 𝜙2(𝜃𝑖), . . . , 𝜙𝐾 (𝜃𝑖)), (18)
𝛾𝑖 ∼ Bernoulli(𝜆 𝑖), (19)

In addition, for theoretical convenience, we further restrict the variational family to satisfy
Condition B.5. |𝜇𝑘 | ≤ 𝐵 and 𝜎2

𝑘
≤ 1

2 log(𝑇/𝑟∗𝑛 log2 (𝑛))
.

Note that the requirement of |𝜇𝑘 | ≤ 𝐵 is fairly reasonable, as most of the existing approximation
results (Chérief-Abdellatif, 2020) only need bounded DNN weights.

We restate a formal version of our Theorem 1 as follows:
Theorem 3. Under Conditions B.1-B.2 and B.4-B.5, Let 𝜎20 be a constant and − log 𝜆 = log(𝑇) + 𝛿[(𝐿 +
1) log 𝑁 + log√𝑛𝑝] for any constant 𝛿 > 0, Then with high probability:∫

ℝ𝑇

𝑑2(𝑃𝜃, 𝑃0)𝑞̂(𝜃)d𝜃 ≤ 𝐶𝜀∗2𝑛 + 𝐶′(𝑟∗𝑛 + 𝜉∗𝑛), (20)

where 𝑑(·, ·) denotes the Hellinger distance, and 𝐶 and 𝐶′ are some constants.

Proof. We introduce Lemma 4 and 5 to help us finish the proof.
Lemma 4. Under Condition B.1-B.3, then with dominating probability,

inf
𝑞(𝜃) ∈F

{
𝐷KL (𝑞(𝜃)∥𝜋(𝜃|𝜆)) +

∫
ℝ𝑇

𝑙𝑛(𝑃0, 𝑃𝜃)𝑞(𝜃)d𝜃
}
≤ 𝐶𝑛(𝑟∗𝑛 + 𝜉∗𝑛)

where 𝐶 is either some positive constant if lim 𝑛(𝑟∗𝑛 + 𝜉∗𝑛) =∞, or any diverging sequence if lim sup 𝑛(𝑟∗𝑛 +
𝜉∗𝑛) ≠ ∞. And 𝑙𝑛(𝑃0, 𝑃𝜃) is defined as:

𝑙𝑛(𝑃0, 𝑃𝜃) =
1
2𝜎2𝜖
(∥𝑌 − 𝑓𝜃(𝑋)∥22 − ∥𝑌 − 𝑓0(𝑋)∥22).

Lemma 5. Under Conditions B.1-B.4, if 𝜎20 is set to be constant and 𝜆 ≤ 𝑇−1 exp{−𝑀𝑛𝑟∗𝑛/𝑠𝑛} for any
positive diverging sequence 𝑀 →∞, then with dominating probability, we have∫

Θ
𝑑2(𝑃𝜃, 𝑃0)𝑞̂(𝜃)d𝜃 ≤ 𝐶𝜀∗2𝑛 +

3
𝑛

inf
𝑞(𝜃) ∈F

{
𝐷KL(𝑞(𝜃)∥𝜋(𝜃|𝜆)) +

∫
Θ
𝑙𝑛(𝑃0, 𝑃𝜃)𝑞(𝜃)d𝜃

}
, (21)

where 𝐶 is some constant, and

𝜀∗𝑛 := 𝜀𝑛(𝐿, 𝑁, 𝑠∗) =
√︁
𝑟𝑛(𝐿, 𝑁, 𝑠∗) log𝛿(𝑛), for any 𝛿 > 1.

SQS 23

Then convergence in squared Hellinger distance follows directly from Lemmas 4 and 5, as the
chosen value of 𝜆 meets the necessary assumptions. □

Remark. Compared to prior results, Lemma 4 demonstrates that a spike-and-slab prior combined
with a Gaussian mixture model (GMM) with finitely many components can effectively approximate
the true underlying function. In contrast, Lemma 5 establishes that the statistical estimation error of
the spike-and-GMM variational distribution vanishes as the sample size 𝑛→∞.

SQS 24

B.1. Proof of Lemma 4

Proof. Let 𝜃∗ = argmin𝜃∈𝐻 (𝐿,𝑁,𝑠,𝐾) ∥ 𝑓𝜃 − 𝑓0∥2∞. By definition, they are only 𝐾 many unique non-zero
number in 𝜃∗, denoted as 𝜇∗

𝑘
∈ ℝ, for 𝑘 = 1, . . . , 𝐾. In other words, for any 𝜃∗

𝑖
≠ 0, 𝜃∗

𝑖
must choose

from the quantization set Q = {𝜇∗1, . . . , 𝜇
∗
𝐾}, and we denote the choice index of 𝜃∗

𝑖
from Q as (𝑖), (i.e.

𝜃∗
𝑖
= 𝜇∗(𝑖)). Now, given 𝜃∗, we construct 𝑞∗(𝜃) as the following:

𝜃𝑖 |𝑧∗𝑖 , 𝛾∗𝑖 ∼ 𝛾∗𝑖
𝐾∑︁
𝑘=1

1{𝑧∗𝑖 = 𝑘}N (𝜇∗𝑘, 𝜎
2
𝑛) + (1 − 𝛾∗𝑖)𝛿0,

𝑧∗𝑖 ∼ Categorical(𝜙1(𝜃∗𝑖), 𝜙2(𝜃∗𝑖), . . . , 𝜙𝐾 (𝜃∗𝑖)),
𝛾∗𝑖 ∼ Bernoulli(𝜓∗𝑖), 𝜓∗𝑖 = 1{𝜃∗𝑖 ≠ 0}

where 𝜎2𝑛 = 𝑠∗

32𝑛 log(3𝑁)−1(2𝐵𝑁)−2𝐿{(𝑝 + 1 + 1
𝐵𝑁−1) +

1
(2𝐵𝑁)2−1 +

2
(2𝐵𝑁−1)2 }

−1. 1 Thus, we can have the
following marginal distribution:

𝑞∗(𝜃) =
∑︁
1{𝛾 = 𝛾∗}

𝑇∏
𝑖=1

𝛾𝑖

𝜙(𝑖) (𝜃∗𝑖)N (𝜇∗(𝑖) , 𝜎2𝑛) +
∑︁
𝑘≠(𝑖)

𝜙𝑘 (𝜃∗𝑖)N (𝜇∗𝑘, 𝜎
2
𝑛)

 + (1 − 𝛾∗𝑖)𝛿0
Next we first need to the bound

∫
∥ 𝑓𝜃 − 𝑓𝜃∗ ∥2∞ 𝑞∗(𝜃). We can also write 𝜃∗ = {𝑊∗1 , 𝑏∗1, . . . ,𝑊∗𝐿+1, 𝑏∗𝐿+1},

then we define the following terms as:
𝑊̃𝑙 = sup

𝑖, 𝑗

|𝑊𝑙,𝑖, 𝑗 −𝑊∗𝑙,𝑖, 𝑗 |,

𝑏𝑙 = sup
𝑖

|𝑏𝑙,𝑖 − 𝑏∗𝑙,𝑖 |.

Then, following the proof in (Chérief-Abdellatif, 2020, Proof of Theorem 7), we can have the following:∫
∥ 𝑓𝜃 − 𝑓𝜃∗ ∥2∞ 𝑞∗(d𝜃)

≤ 2𝑁2𝐿−2
(
𝑑 + 1 + 1

𝐵𝑁 − 1

)2 (𝐿∑︁
𝑙=1

𝐵2𝑙−2
𝐿∏

𝑣=𝑙+1

∫
(𝐵 + 𝑊̃𝑣)2𝑞(d𝜃)

∫
𝑊̃2
𝑙 𝑞𝑙 (d𝜃𝑙)

+ 2
𝐿∑︁
𝑙=1

𝑙−1∑︁
𝑘=1

𝐵𝑙−1𝐵𝑘−1
𝐿∏

𝑣=𝑙+1

∫
(𝐵 + 𝑊̃𝑣)2𝑞(d𝜃)

∫
𝑊̃𝑙𝑞𝑙 (d𝜃𝑙)

𝑙∏
𝑣=𝑘+1

∫
(𝐵 + 𝑊̃𝑣)𝑞(d𝜃)

∫
𝑊̃𝑘𝑞(d𝜃)

)
+ 2

(𝐿∑︁
𝑙=1

𝐷2(𝐿−𝑙)
𝐿∏

𝑣=𝑙+1

∫
(𝐵 + 𝑊̃𝑣)2𝑞(d𝜃)

∫
𝑏2𝑙 𝑞(d𝜃)

+ 2
𝐿∑︁
𝑙=1

𝑙−1∑︁
𝑘=1

𝐷𝐿−𝑙𝐷𝐿−𝑘
𝐿∏

𝑣=𝑙+1

∫
(𝐵 + 𝑊̃𝑣)2𝑞(d𝜃)

∫
𝑏𝑙𝑞(d𝜃)

𝑙∏
𝑣=𝑘+1

∫
(𝐵 + 𝑊̃𝑣)𝑞(d𝜃)

∫
𝑏𝑘𝑞(d𝜃)

)
. (22)

Then next we need to upper bound the term:∫
𝑊̃𝑙𝑞

∗(d𝜃) =
∫

sup
𝑖, 𝑗

|𝑊𝑙,𝑖, 𝑗 −𝑊∗𝑙,𝑖, 𝑗 |𝑞
∗(d𝜃)

We first bound the following, for some 𝑡 > 0,

exp
(
𝔼[𝑡 sup

𝑖, 𝑗

|𝑊𝑙,𝑖, 𝑗 −𝑊∗𝑙,𝑖, 𝑗 |]
)
≤ 𝔼 sup

𝑖, 𝑗

exp
(
𝑡 |𝑊𝑙,𝑖, 𝑗 −𝑊∗𝑙,𝑖, 𝑗 |

)
1Notice that 𝜎2𝑛 satisfies Condition B.5 as with sufficient large 𝑛, 𝑁 and 𝐿, 1/𝑛 ≤ 1/log(𝑛) and 1/𝑁 𝐿 < 1/log(𝑇) =

1/log(𝑁𝐿).

SQS 25

≤ 𝑁2𝔼
[
exp

(
𝑡 |𝑊𝑙,𝑖, 𝑗 −𝑊∗𝑙,𝑖, 𝑗 |

)]
= 𝑁2𝔼

[
𝔼N(𝜇∗

𝑘
,𝜎2𝑛)

[
exp(𝑡 |𝑊𝑙,𝑖, 𝑗 −𝑊∗𝑙,𝑖, 𝑗 |) |𝑧𝑙,𝑖, 𝑗 = 𝑘

]]
= 𝑁2

𝐾∑︁
𝑘=1

𝜙𝑘 (𝑊∗𝑙,𝑖, 𝑗)𝔼N(𝜇∗
𝑘
,𝜎2𝑛)

[
exp

(
𝑡 |𝑊𝑙,𝑖, 𝑗 −𝑊∗𝑙,𝑖, 𝑗 |

)]
= 𝑁2

(
𝜙(𝑖) (𝑊∗𝑙,𝑖, 𝑗)𝔼N(𝜇∗(𝑖) ,𝜎2𝑛)

[
exp

(
𝑡 |𝑊𝑙,𝑖, 𝑗 −𝑊∗𝑙,𝑖, 𝑗 |

)]
+

𝐾∑︁
𝑘≠(𝑖)

𝜙𝑘 (𝑊∗𝑙,𝑖, 𝑗)𝔼
[
exp

(
𝑡 |𝑊𝑙,𝑖, 𝑗 −𝑊∗𝑙,𝑖, 𝑗 |

)])
(23)

Notice that by definition 𝑊∗
𝑙,𝑖, 𝑗

= 𝜇∗(𝑖) , thus we can bound the first term as:

𝔼N(𝜇∗(𝑖) ,𝜎
2
𝑛)

[
exp

(
𝑡 |𝑊𝑙,𝑖, 𝑗 −𝑊∗𝑙,𝑖, 𝑗 |

)]
= 𝔼N(𝜇∗(𝑖) ,𝜎

2
𝑛)

[
exp

(
𝑡 |𝑊𝑙,𝑖, 𝑗 − 𝜇∗(𝑖) |

)]
=

∫ ∞

0
𝑃(exp(𝑡 |𝑊𝑙,𝑖, 𝑗 − 𝜇∗(𝑖) | > 𝑥))d𝑥

=

∫ ∞

0
𝑃

(
|𝑊𝑙,𝑖, 𝑗 − 𝜇∗𝑖 | >

log 𝑥
𝑡

)
d𝑥

=

∫ ∞

0
2𝑃

(
𝑊𝑙,𝑖, 𝑗 − 𝜇∗(𝑖) >

log 𝑥
𝑡

)
d𝑥

=

∫ ∞

0
2𝑃

(
𝑧 >

log 𝑥
𝑡𝜎𝑛

)
d𝑥

= 2 exp
(
𝑡2𝜎2𝑛
2

)
Next, we bound the second term of the Equation (23):

𝔼N(𝜇∗
𝑘
,𝜎2𝑛)

[
exp(𝑡 |𝑊𝑙,𝑖, 𝑗 − 𝜇∗(𝑖) |)

]
=

∫ ∞

0
𝑃
(
exp(𝑡 |𝑊𝑙,𝑖, 𝑗 − 𝜇∗(𝑖) | > 𝑥)

)
d𝑥

=

∫ ∞

0
2𝑃

(
𝑊𝑙,𝑖, 𝑗 − 𝜇∗(𝑖) >

log 𝑥
𝑡

)
d𝑥

=

∫ ∞

0
2𝑃

(
𝑊𝑙,𝑖, 𝑗 − 𝜇∗𝑘 + 𝜇

∗
𝑘 − 𝜇

∗
(𝑖) >

log 𝑥
𝑡

)
d𝑥

=

∫ ∞

0
2𝑃

(
𝜎𝑛𝑧 + 𝜇∗𝑘 − 𝜇

∗
(𝑖) >

log 𝑥
𝑡

)
d𝑥

= 2 exp
(
𝑡(𝜇∗𝑘 − 𝜇

∗
(𝑖)) +

𝜎2𝑛𝑡
2

2

)
≤ 2 exp

(
4𝑡 + 𝜎

2
𝑛𝑡

2

2
)

Notice that the last inequality is because of sup𝑖, 𝑗 (𝜇∗𝑖 − 𝜇∗𝑗) ≤ 4. And by choosing 𝑡 =
√︁
2 log(3𝑁2)/𝜎𝑛,

the Equation (23), can be bounded by:

exp
(
𝔼

[
𝑡 sup

𝑖, 𝑗

|𝑊𝑙,𝑖, 𝑗 −𝑊∗𝑙,𝑖, 𝑗 |
])
≤ 2𝑁2

(
𝜙(𝑖) (𝑊∗𝑙,𝑖, 𝑗) exp(𝑡2𝜎2𝑛/2) +

∑︁
𝑘≠(𝑖)

𝜙𝑘 (𝑊∗𝑙,𝑖, 𝑗) exp(4𝑡 + 𝑡2𝜎2𝑛/2)
)

SQS 26

= 2𝑁2
(
exp(𝑡2𝜎2𝑛/2) +

∑︁
𝑘≠(𝑖)

𝜙𝑘 (𝑊∗𝑙,𝑖, 𝑗) exp(4𝑡 + 𝑡2𝜎2𝑛/2)
)

≤ 2𝑁2
(
exp(𝑡2𝜎2𝑛/2) + 1/2 exp(𝑡2𝜎2𝑛/2)

)
= 3𝑁2 exp

(
𝑡2𝜎2𝑛/2

)
The second inequality is obtained by setting 𝜏 such that ∑

𝑘≠(𝑖) 𝜙𝑘 (𝑊∗𝑙,𝑖, 𝑗) ≤ 1/2. Note that given a
fixed DNN structure, such a 𝜏 always exists as the ∑

𝑘≠(𝑖) 𝜙𝑘 (𝑊∗𝑙,𝑖, 𝑗) monotonically decrease to zero as 𝜏
decrease. Thus, we can have the

𝔼
[
sup
𝑖, 𝑗

|𝑊𝑙,𝑖, 𝑗 −𝑊∗𝑙,𝑖, 𝑗 |
]
≤ 3𝑁2

𝑡
+ 𝑡𝜎

2
𝑛

2 =

√︃
2𝜎2𝑛 log(3𝑁2) ≤

√︃
8𝜎2𝑛 log(3𝑁)

Next we bound
∫
𝑊̃2
𝑙
𝑞∗(d𝑥), following similar procedure, for some 𝑡 > 0, we can have:

exp
(
𝔼
[
𝑡 sup

𝑖, 𝑗

(𝑊𝑙,𝑖, 𝑗 −𝑊∗𝑙,𝑖, 𝑗)
2]) ≤ 𝑁2𝔼

[
exp(𝑡(𝑊𝑙,𝑖, 𝑗 −𝑊∗𝑖,𝑖, 𝑗)2)

]
≤ 𝑁2𝔼

[
𝔼N(𝜇𝑘,𝜎2𝑛) [𝑡(𝑊𝑙,𝑖, 𝑗 −𝑊∗𝑙,𝑖, 𝑗)

2 |𝑧𝑙,𝑖, 𝑗 = 𝑘]
]

= 𝑁2
(
𝜙(𝑖) (𝑊∗𝑙,𝑖, 𝑗)𝔼N(𝜇∗(𝑖) ,𝜎2𝑛)

[
exp(𝑡(𝑊𝑙,𝑖, 𝑗 −𝑊∗𝑙,𝑖, 𝑗)

2)
]

+
∑︁
𝑘≠(𝑖)

𝔼N(𝜇𝑘,𝜎2𝑛)

[
exp(𝑡(𝑊𝑙,𝑖, 𝑗 −𝑊∗𝑙,𝑖, 𝑗)

2)
])

(24)

Note that with a slight abuse of notation, the 𝑧𝑙,𝑖, 𝑗 in the above equation means the latent variable
𝑧𝑖 (introduced in (17)) corresponding to the weight 𝑊𝑙,𝑖, 𝑗. The first term of Equation (24) can be
bounded for 𝑡 < 1

2𝜎2𝑛
as following:

𝔼N(𝜇∗(𝑖) ,𝜎
2
𝑛)

[
exp

(
𝑡(𝑊𝑙,𝑖, 𝑗 −𝑊∗𝑙,𝑖, 𝑗)

2
)]

= 𝔼N(𝜇∗(𝑖) ,𝜎
2
𝑛)

[
exp

(
𝑡(𝑊𝑙,𝑖, 𝑗 − 𝜇∗(𝑖))

2
)]

=
1√︁

1 − 2𝑡𝜎2𝑛
.

And the second term of Equation (24) can be bounded as:

𝔼N(𝜇𝑘,𝜎2𝑛)

[
exp

(
𝑡(𝑊𝑙,𝑖, 𝑗 −𝑊∗𝑙,𝑖, 𝑗)

2
)]

= 𝔼N(𝜇𝑘,𝜎2𝑛)

[
exp

(
𝑡(𝑊𝑙,𝑖, 𝑗 − 𝜇∗(𝑖))

2
)]

= 𝔼N(𝜇𝑘,𝜎2𝑛)

[
exp

(
𝑡(𝑊𝑙,𝑖, 𝑗 − 𝜇∗𝑘 + 𝜇

∗
𝑘 − 𝜇

∗
(𝑖))

)]
= 𝔼

[
exp

(
𝑡(𝜎𝑛𝑧 + 𝜇∗𝑘 − 𝜇

∗
(𝑖))

2
)]

=
1√︁

1 − 2𝑡𝜎2𝑛
exp

((𝜇∗
𝑘
− 𝜇∗(𝑖))

2𝑡

1 − 2𝑡𝜎2𝑛

)
≤ 1√︁

1 − 2𝑡𝜎2𝑛
exp

(16𝑡
1 − 2𝑡𝜎2𝑛

)
The last inequality is again because of the property that sup𝑖, 𝑗 |𝜇∗𝑖 − 𝜇∗𝑗 | ≤ 4. Thus Equation (24) can
be bounded by:

exp
(
𝔼
[
𝑡 sup

𝑖, 𝑗

(𝑊𝑙,𝑖, 𝑗 −𝑊∗𝑙,𝑖, 𝑗)
2]) ≤ 𝑁2

(
1√︁

1 − 2𝑡𝜎2𝑛
+

∑︁
𝑘≠(𝑖)

𝜙𝑘 (𝑊∗𝑙,𝑖, 𝑗)
1√︁

1 − 2𝑡𝜎2𝑛
exp

(16𝑡
1 − 2𝑡𝜎2𝑛

))

SQS 27

≤ 2𝑁2 1√︁
1 − 2𝑡𝜎2𝑛

,

where the last inequality is because of choosing a small 𝜏 such ∑
𝑘≠(𝑖) 𝜙𝑘 (𝑊∗𝑙,𝑖, 𝑗) ≤ exp(16𝑡

1−2𝑡𝜎2𝑛
), such 𝜏

always exist since ∑
𝑘≠(𝑖) 𝜙𝑘 (𝑊∗𝑙,𝑖, 𝑗) monotonically decrease to 0 as 𝜏→ 0.

Thus we can bound
∫
𝑊̃2
𝑙
𝑞∗(d𝑥) by the following:∫
𝑊̃2
𝑙 𝑞
∗(d𝑥) =

∫
sup
𝑖, 𝑗

(𝑊𝑙,𝑖, 𝑗 −𝑊∗𝑙,𝑖, 𝑗)
2d𝑥

≤ log(𝑁2)/𝑡 + log
(2√︁

1 − 2𝑡𝜎2𝑛

)
/𝑡

= 4 log(𝑁2)𝜎2𝑛 + 4 log
©­­«

2√︃
1
2

ª®®¬ 𝜎2𝑛
≤ 8𝜎2𝑛 log(3𝑁)

By choosing
√︁
8𝜎2𝑛 log(3𝑁) ≤ 𝐵, we can have:∫ (

𝐵 + 𝑊̃𝑙

)
𝑞∗(d𝜃) ≤ 2𝐵,∫ (

𝐵 + 𝑊̃𝑙

)2
𝑞∗(d𝜃) ≤ 𝐵2 + 2𝐵

√︃
8𝜎2𝑛 log(3𝑁) + 8𝜎2𝑛 log(3𝑁) ≤ 4𝐵2.

Similarly, we can have the following:∫
𝑏𝑙𝑞
∗(d𝜃) ≤

√︃
8𝜎2𝑛 log(3𝑁),∫

𝑏2𝑙 𝑞
∗(d𝜃) ≤ 8𝜎2𝑛 log(3𝑁).

Combined with Equation (22), we can have:∫
∥ 𝑓𝜃 − 𝑓𝜃∗ ∥∗∞ 𝑞∗(d𝜃) ≤ 2𝑁2𝐿−2

(
𝑝 + 1 + 1

𝐵𝑁 − 1

)2 (𝐿∑︁
ℓ=1

𝐵2ℓ−2(4𝐵2)𝐿−ℓ8𝜎2𝑛 log(3𝑁)

+ 2
𝐿∑︁

ℓ=1

ℓ−1∑︁
𝑘=1

𝐵ℓ−1𝐵𝑘−1(4𝐵2)𝐿−ℓ
√︃
8𝜎2𝑛 log(3𝑁) (2𝐵)ℓ−𝑘

√︃
8𝜎2𝑛 log(3𝑁)

)
+ 2

(𝐿∑︁
ℓ=1

𝑁2(𝐿−ℓ) (4𝐵2)𝐿−ℓ8𝜎2𝑛 log(3𝑁)

+ 2
𝐿∑︁

ℓ=1

ℓ−1∑︁
𝑘=1

𝑁 𝐿−ℓ𝑁 𝐿−𝑘 (4𝐵2)𝐿−ℓ
√︃
8𝜎2𝑛 log(3𝑁) (2𝐵)ℓ−𝑘

√︃
8𝜎2𝑛 log(3𝑁)

)
.

With some algebra, we can have:∫
∥ 𝑓𝜃 − 𝑓𝜃∗ ∥22𝑞

∗
𝑛(d𝜃)

≤ 2𝑁2𝐿−2
(
𝑑 + 1 + 1

𝐵𝑁 − 1

)2 (
𝐵2𝐿−28𝜎2𝑛 log(3𝑁)

𝐿−1∑︁
ℓ=0

4ℓ + 2𝐵2𝐿−28𝜎2𝑛 log(3𝐷)
𝐿∑︁

ℓ=1

ℓ−1∑︁
𝑘=1

2𝐿−ℓ2𝐿−𝑘
)

SQS 28

+ 2
(
8𝜎2𝑛 log(3𝑁)

𝐿∑︁
ℓ=1
(2𝐵𝑁)2𝐿−2ℓ + 16𝜎2𝑛 log(3𝑁)

𝐿∑︁
ℓ=1

ℓ−1∑︁
𝑘=1
(2𝐵𝑁)𝐿−ℓ (2𝐵𝑁)𝐿−𝑘

)
≤ 2𝑁2𝐿−2

(
𝑝 + 1 + 1

𝐵𝑁 − 1

)2 (
𝐵2𝐿−28𝜎2𝑛 log(3𝑁)

4𝐿 − 1
4 − 1 + 2𝐵

2𝐿−28𝜎2𝑛 log(3𝑁)
𝐿∑︁

ℓ=1
2𝐿−ℓ2𝐿−ℓ+1

ℓ−2∑︁
𝑘=0

2𝑘
)

+ 2
(
8𝜎2𝑛 log(3𝑁)

𝐿−1∑︁
ℓ=0
(2𝐵𝑁)2ℓ + 16𝜎2𝑛 log(3𝑁)

𝐿∑︁
ℓ=1
(2𝐵𝐷)𝐿−ℓ (2𝐵𝑁)𝐿−ℓ+1

ℓ−2∑︁
𝑘=0
(2𝐵𝑁)𝑘

)
≤ 2𝑁2𝐿−2

(
𝑑 + 1 + 1

𝐵𝑁 − 1

)2 (
𝐵2𝐿−28𝜎2𝑛 log(3𝑁)

4𝐿
3 + 2𝐵

2𝐿−28𝜎2𝑛 log(3𝑁)
𝐿∑︁

ℓ=1
2𝐿−ℓ2𝐿−ℓ+12ℓ−1

)
+ 2

(
8𝜎2𝑛 log(3𝑁)

(2𝐵𝑁)2𝐿
(2𝐵𝑁)2 − 1 + 16𝜎

2
𝑛 log(3𝑁)

𝐿∑︁
ℓ=1
(2𝐵𝑁)𝐿−ℓ (2𝐵𝑁)𝐿−ℓ+1 (2𝐵𝑁)

ℓ−1

2𝐵𝑁 − 1

)
≤ 2𝑁2𝐿−2

(
𝑑 + 1 + 1

𝐵𝑁 − 1

)2 (
𝐵2𝐿−28𝜎2𝑛 log(3𝑁)

4𝐿
3 + 2𝐵

2𝐿−28𝜎2𝑛 log(3𝑁)2𝐿
𝐿−1∑︁
ℓ=0

2ℓ
)

+ 2
(
8𝜎2𝑛 log(3𝑁)

(2𝐵𝑁)2𝐿
(2𝐵𝑁)2 − 1 + 16𝜎

2
𝑛 log(3𝑁)

𝐿−1∑︁
ℓ=0
(2𝐵𝑁)ℓ (2𝐵𝑁)

𝐿

2𝐵𝑁 − 1

)
≤ 2𝑁2𝐿−2

(
𝑝 + 1 + 1

𝐵𝑁 − 1

)2 (
𝐵2𝐿−28𝜎2𝑛 log(3𝑁)

4𝐿
3 + 2𝐵

2𝐿−28𝜎2𝑛 log(3𝑁)22𝐿
)

+ 2
(
8𝜎2𝑛 log(3𝑁)

(2𝐵𝑁)2𝐿
(2𝐵𝑁)2 − 1 + 16𝜎

2
𝑛 log(3𝑁)

(2𝐵𝑁)2𝐿
(2𝐵𝑁 − 1)2

)
= 2𝑁2𝐿−2

(
𝑝 + 1 + 1

𝐵𝑁 − 1

)2
8𝜎2𝑛 log(3𝑁)

(
𝐵2𝐿−2

4𝐿
3 + 2𝐵

2𝐿−222𝐿
)

+ 2
(
(2𝐵𝑁)2𝐿
(2𝐵𝑁)2 − 1 + 2

(2𝐵𝑁)2𝐿
(2𝐵𝑁 − 1)2

)
8𝜎2𝑛 log(3𝑁),

as 𝐵𝑁 > 2,∫
∥ 𝑓𝜃 − 𝑓𝜃∗ ∥2∞𝑞∗(d𝜃)

≤ 16𝜎2𝑛 log(3𝑁)
{
𝑁2𝐿−2

(
𝑝 + 1 + 1

𝐵𝑁 − 1

)27
3𝐵

2𝐿−222𝐿 + (2𝐵𝑁)2𝐿
(1
(2𝐵𝑁)2 − 1 +

2
(2𝐵𝑁 − 1)2

)}
= 16𝜎2𝑛 log(3𝑁)

{
(2𝐵𝑁)2𝐿 1

(𝐵𝑁)2

(
𝑝 + 1 + 1

𝐵𝑁 − 1

)27
3 + (2𝐵𝑁)

2𝐿
(1
(2𝐵𝑁)2 − 1 +

2
(2𝐵𝑁 − 1)2

)}
≤ 16𝜎2𝑛 log(3𝑁) (2𝐵𝑁)2𝐿

{(
𝑝 + 1 + 1

𝐵𝑁 − 1

)2
+ 1
(2𝐵𝑁)2 − 1 +

2
(2𝐵𝑁 − 1)2

}
=

𝑠∗

2𝑛 ≤ 𝑟
∗
𝑛

The last equality is due to the definition of 𝜎𝑛, and the last inequality is due to the definition of 𝑟∗𝑛.
In the next step, we aim to bound the integral

∫
ℝ𝑇 𝑙𝑛(𝑃0, 𝑃𝜃)d𝜃. Note that by definition:

𝑙𝑛(𝑃0, 𝑃𝜃) =
1
2𝜎2𝜖
(∥𝑌 − 𝑓𝜃(𝑋)∥22 − ∥𝑌 − 𝑓0(𝑋)∥22)

=
1
2𝜎2𝜖
(∥𝑌 − 𝑓0(𝑋) + 𝑓0(𝑋) − 𝑓𝜃(𝑋))∥22 − ∥𝑌 − 𝑓0(𝑋)∥22)

SQS 29

=
1
2𝜎2𝜖
(∥ 𝑓𝜃(𝑋) − 𝑓0(𝑋)∥22 + 2⟨𝑌 − 𝑓0(𝑋), 𝑓0(𝑋) − 𝑓𝜃(𝑋)⟩),

We can define the following:

R1 =

∫
ℝ𝑇

∥ 𝑓𝜃(𝑋) − 𝑓0(𝑋)∥22𝑞
∗(𝜃) (d𝜃),

R2 =

∫
ℝ𝑇

⟨𝑌 − 𝑓0(𝑋), 𝑓0(𝑋) − 𝑓𝜃(𝑋)⟩𝑞∗(𝜃) (d𝜃).

Since ∥ 𝑓𝜃(𝑋) − 𝑓0(𝑋)∥22 ≤ 𝑛∥ 𝑓𝜃 − 𝑓0∥2∞ ≤ 𝑛(𝑟∗𝑛 + ∥ 𝑓𝜃∗ − 𝑓0∥2∞), it follows that

R1 ≤ 𝑛𝑟∗𝑛 + 𝑛∥ 𝑓𝜃∗ − 𝑓0∥2∞.

Given 𝑌 − 𝑓0(𝑋) = 𝜖 ∼ N(0, 𝜎2𝜖 𝐼), we have

R2 = 𝜖𝑇
∫
Θ
(𝑓0(𝑋) − 𝑓𝜃(𝑋))𝑞∗(𝜃) (d𝜃) ∼ N (0, 𝑐 𝑓𝜎2𝜖),

whereby the Cauchy-Schwarz inequality,

𝑐 𝑓 = ∥
∫
Θ
(𝑓0(𝑋) − 𝑓𝜃(𝑋))𝑞∗(𝜃) (d𝜃)∥22 ≤ R1

Thus, R2 = 𝑂𝑝(
√
R1), and with high probability, R2 ≤ 𝐶′0R1 for some positive constant 𝐶′0 if lim 𝑛(𝑟∗𝑛 +

𝜉∗𝑛) =∞, or for any diverging sequence 𝐶′0 if lim sup 𝑛(𝑟∗𝑛 + 𝜉∗𝑛) ≠ ∞. Therefore,∫
ℝ𝑇

𝑙𝑛(𝑃0, 𝑃𝜃)𝑞∗(𝜃) (d𝜃) ≤ 𝐶′1(𝑛𝑟
∗
𝑛 + ∥ 𝑓𝜃∗ − 𝑓0∥2∞) w.h.p. (25)

In the next step, we try to bound the 𝐷KL divergence between 𝑞∗ and 𝜋(𝜃|𝜆),

𝐷KL
(
𝑞∗(𝜃)∥𝜋(𝜃|𝜆)

)
≤ log

(1
𝜋(𝛾∗)

)
+

𝑇∑︁
𝑖=1

𝐷KL

[
𝛾∗𝑖

[∑︁
𝑘

𝜙𝑘 (𝜃∗𝑖)N (𝜇∗𝑘, 𝜎
2
𝑛)

]
+ (1 − 𝛾∗𝑖)𝛿0

𝛾∗𝑖N(0, 𝜎20) + (1 − 𝛾∗𝑖)𝛿0] (26)

= log 1
𝜆𝑠
∗ (1 − 𝜆)𝑇−𝑠∗ +

𝑇∑︁
𝑖=1

𝛾∗𝑖 𝐷KL

[∑︁
𝑘

𝜙𝑘 (𝜃∗𝑖)N (𝜇∗𝑘, 𝜎
2
𝑛)∥N (0, 𝜎2𝑛)

]
≤𝑠∗ log

(1
𝜆

)
+ (𝑇 − 𝑠∗) log

(1
1 − 𝜆

)
+

𝑇∑︁
𝑖=1

𝛾∗𝑖

𝐾∑︁
𝑘=1

𝜙𝑘 (𝜃∗𝑖)𝐷KL(N (𝜇∗𝑘, 𝜎
2
𝑛)∥N (0, 𝜎20)) (27)

≤𝑠∗ log
(1
𝜆

)
+ (𝑇 − 𝑠∗) log

(1
1 − 𝜆

)
+

𝑇∑︁
𝑖=1

𝛾∗𝑖

𝐾∑︁
𝑘=1

𝜙𝑘 (𝜃∗𝑖)
[1
2 log

𝜎20
𝜎2𝑛
+
𝜎2𝑛 + (𝜇∗𝑘)

2

2𝜎20
− 1
2
]

≤𝑠∗ log
(1
𝜆

)
+ (𝑇 − 𝑠∗) log

(1
1 − 𝜆

)
+

𝑇∑︁
𝑖=1

𝛾∗𝑖

[1
2 log

𝜎20
𝜎2𝑛
+ 𝜎

2
𝑛 + 4
2𝜎20

− 1
2
]

≤𝐶0𝑛𝑟∗𝑛 +
𝑠∗

2 𝜎
2
𝑛 +

𝑠∗

2𝜎20
(𝐵2 − 1) + 𝑠∗

2 log
(
𝜎20
𝜎2𝑛

)
(28)

≤(𝐶0 + 1)𝑛𝑟∗𝑛 +
𝑠∗

2𝜎20
𝐵2 + 𝑠∗

2 log
(16𝑛
𝑠∗

log(3𝑝𝑁) (2𝐵𝑁)2𝐿+2
{
(𝑝 + 1 + 1

𝐵𝑁 − 1)
2 + 1
(2𝐵𝑁)2 − 1 +

2
(2𝐵𝑁 − 1)2

})

SQS 30

≤(𝐶0 + 2)𝑛𝑟∗𝑛 +
𝑠∗

2𝜎20
𝐵2 + (𝐿 + 1)𝑠∗ log(2𝐵𝑁) + 𝑠∗

2 log log(3𝐵𝑁) + 𝑠∗

2 log
(𝑛
𝑠∗
𝑝2

)
≤(𝐶0 + 3)𝑛𝑟∗𝑛 + (𝐿 + 1)𝑠∗ log 𝑁 + 𝑠∗ log

(
𝑝

√︂
𝑛

𝑠∗

)
≤𝐶1𝑛𝑟∗𝑛, for sufficiently large 𝑛.

where the inequality (26) and (27) are due the Lemma 2 and the inequality (28) is because of the
fact that 𝐵 > 2 and ∑𝑇

𝑖=1 𝛾
∗
𝑖
= 𝑠∗, thus combined with the result in equation 25, we finish the proof. □

SQS 31

B.2. Proof of Lemma 5

Proof. Following previous work (Bai et al., 2020, proof of Lemma 4.2), we first define the space

𝐻𝑛(𝜃) = {𝜃 ∈ ℝ𝑇 : ∥𝜃∥0 ≤ 𝑠𝑛, ∥𝜃∥∞ ≤ 𝐵 + 1},
𝐻′𝑛(𝜃) = {𝜃 ∈ ℝ𝑇 : ∥𝜃∥0 > 𝑠𝑛, ∥𝜃∥∞ ≤ 𝐵 + 1},
𝐻′′𝑛 (𝜃) = {𝜃 ∈ ℝ𝑇 : ∥𝜃∥∞ > 𝐵 + 1}.

By the above definitions, we now have:∫
ℝ𝑇

𝑑2(𝑃𝜃, 𝑃0)𝑞̂(d𝜃) =
∫
𝐻𝑛 (𝜃)

𝑑2(𝑃𝜃, 𝑃0)𝑞̂(d𝜃) +
∫
𝐻′𝑛 (𝜃)

𝑑2(𝑃𝜃, 𝑃0)𝑞̂(d𝜃) +
∫
𝐻′′𝑛 (𝜃)

𝑑2(𝑃𝜃, 𝑃0)𝑞̂(d𝜃). (29)

Lemma 6 presents a variational characterization of the 𝐷KL divergence, originally due to Donsker
and Varadhan. The proof is available in (Boucheron et al., 2013).
Lemma 6. Let 𝜇 be any probability measure and ℎ a measurable function with 𝑒ℎ ∈ 𝐿1(𝜇), then

log
∫

𝑒ℎ(𝜂)𝜇(𝑑𝜂) = sup
𝜌

[∫
ℎ(𝜂)𝜌(𝑑𝜂) − 𝐷KL(𝜌∥𝜇)

]
.

We can define the truncation of distribution 𝑞̂(·) on the set 𝐻𝑛(𝜃) denoted as 𝑞(·), (i.e. 𝑞(𝜃) =
𝑞̂(𝜃)1{𝜃 ∈ 𝐻𝑛(𝜃)}/𝑞̂(𝐻𝑛(𝜃))), similarly we can also define the 𝜋̃(𝜃) = 𝜋(𝜃)1{𝜃 ∈ 𝐻𝑛(𝜃)}/𝑞̂(𝐻𝑛(𝜃)).
By adopting the arguments from (Bai et al., 2020), and following steps analogous to those leading to
Equation (17) therein, we obtain:∫

𝐻𝑛 (𝜃)
𝜂(𝑃𝜃, 𝑃0) 𝜋(𝜃) d𝜃 ≤ exp

(
𝐶0𝑛𝜀∗2𝑛

)
, w.h.p. (30)

for some constant 𝐶0 > 0, where log 𝜂(𝑃𝜃, 𝑃0) = 𝑙𝑛(𝑃𝜃, 𝑃0) + 𝑛
3𝑑

2(𝑃𝜃, 𝑃0).
Then, given the Lemma 4 and equation (30), we can show that the first term can be bounded

w.h.p. as:
𝑛

3𝑞̂(𝐻𝑛(𝜃))

∫
𝐻𝑛 (𝜃)

𝑑2(𝑃𝜃, 𝑃0)𝑞̂(𝜃)d𝜃

≤ 𝐶𝑛𝜀∗2𝑛 + KL(𝑞(𝜃)∥𝜋(𝜃)) −
∫
𝐻𝑛 (𝜃)

𝑙𝑛(𝑃𝜃, 𝑃0)𝑞(𝜃)d𝜃

= 𝐶𝑛𝜀∗2𝑛 +
1

𝑞̂(𝐻𝑛(𝜃))

(
KL(𝑞̂(𝜃)∥𝜋(𝜃)) −

∫
Θ
𝑙𝑛(𝑃𝜃, 𝑃0)𝑞̂(𝜃)d𝜃

)
− 1
𝑞̂(𝐻𝑛(𝜃))

(∫
𝐻𝑛 (𝜃) 𝑐

log 𝑞̂(𝜃)
𝜋(𝜃) 𝑞̂(𝜃)d𝜃 −

∫
𝐻𝑛 (𝜃) 𝑐

𝑙𝑛(𝑃𝜃, 𝑃0)𝑞̂(𝜃)d𝜃
)
+ log 𝜋(𝐻𝑛(𝜃))

𝑞̂(𝐻𝑛(𝜃))
.

(31)

Additionally, notice that:∫
𝜃∈𝐻′𝑛 (𝜃)

𝑑2(𝑃𝜃, 𝑃0)𝑞̂(𝜃)d𝜃 ≤
∫
𝜃∈𝐻′𝑛 (𝜃)

𝑞̂(𝜃)d𝜃 = 𝑞̂(𝐻′𝑛(𝜃)),

SQS 32

combined with the fact that 𝑑2(𝑃𝜃, 𝑃0) ≤ 1, the second term of the Equation (29) can be bounded
with high probability as:∫

𝑑2(𝑃𝜃, 𝑃0)𝑞̂(𝜃)d𝜃 ≤3𝑞̂(Θ𝑛)𝐶𝜀∗2𝑛 +
3
𝑛

(
𝐷KL(𝑞̂(𝜃)∥𝜋(𝜃)) −

∫
𝐻𝑛 (𝜃)

𝑙𝑛(𝑃𝜃, 𝑃0)𝑞̂(𝜃)d𝜃
)

+ 3
𝑛

∫
𝐻′𝑛 (𝜃) 𝑐

𝑙𝑛(𝑃𝜃, 𝑃0)𝑞̂(𝜃)d𝜃 +
3
𝑛

∫
𝐻′𝑛 (𝜃) 𝑐

log 𝜋(𝜃)
𝑞̂(𝜃) 𝑞̂(𝜃)d𝜃

+ 3𝑞̂(𝐻𝑛(𝜃))
𝑛

log 𝜋(𝐻𝑛(𝜃))
𝑞̂(𝐻𝑛(𝜃))

+ 𝑞̂(𝐻′𝑛(𝜃)) + 𝑞̂(𝐻′′𝑛 (𝜃)).

(32)

Following the procedure in (Bai et al., 2020, Lemma 4.2, equation 20), we can show with high
probability that:∫

𝑑2(𝑃𝜃, 𝑃0)𝑞̂(𝜃)d𝜃

≤ 3𝑞̂(𝐻𝑛)𝐶𝜀∗2𝑛 +
3
𝑛

(
𝐷KL(𝑞̂(𝜃)∥𝜋(𝜃)) −

∫
𝑙𝑛(𝑃𝜃, 𝑃0)𝑞̂(𝜃)d𝜃

)
+ 3
𝑛

∫
𝐻𝑐
𝑛

𝑙𝑛(𝑃𝜃, 𝑃0)𝑞̂(𝜃)d𝜃

+ 3
𝑛

∫
𝐻𝑐
𝑛

log 𝜋(𝜃)
𝑞̂(𝜃) 𝑞̂(𝜃)d𝜃 +

3𝑞̂(𝐻𝑛)
𝑛

log 𝜋(𝐻𝑛)
𝑞̂(𝐻𝑛)

+ 𝑞̂(𝐻′𝑛(𝜃)) + 𝑞̂(𝐻′′𝑛 (𝜃))

= 3𝑞̂(𝐻𝑛)𝐶𝜀∗2𝑛 +
3
𝑛

(
𝐷KL(𝑞̂(𝜃)∥𝜋(𝜃)) −

∫
ℝ𝑇

𝑙𝑛(𝑃𝜃, 𝑃0)𝑞̂(𝜃)d𝜃
)
+ 3
𝑛

∫
𝐻𝑐
𝑛

𝑙𝑛(𝑃𝜃𝑑, 𝑃0)𝑞̂(𝜃)d𝜃

+ 3
𝑛

∫
𝐻𝑐
𝑛

log 𝜋(𝜃)
𝑞̂(𝜃) 𝑞̂(𝜃)d𝜃 +

3𝑞̂(𝐻𝑛)
𝑛

log 𝜋(𝐻𝑛)
𝑞̂(𝐻𝑛)

+ 𝑞̂(𝐻′𝑛) + 𝑞̂(𝐻′′𝑛)

≤ 𝐶𝜀∗2𝑛 +
3
𝑛

(
𝐷KL(𝑞̂(𝜃)∥𝜋(𝜃)) −

∫
ℝ𝑇

𝑙𝑛(𝑃𝜃, 𝑃0)𝑞̂(𝜃)d𝜃
)
+ 𝑂(1/𝑛) + 𝑞̂(𝐻′′𝑛),

where 𝐶 is some constant. Next, we show that 𝑞̂(𝐻′′𝑛 (𝜃)) = 𝑂(𝜀∗2𝑛).
Lemma 7. Given the Condition B.5, 𝑞̂(𝐻′′𝑛 (𝜃)) = 𝑂(𝜀∗2𝑛) holds.

Proof. Let 𝜎̂𝑚 =max{𝜎̂1, . . . , 𝜎̂𝐾}, then by definition of the variational distribution 𝑞(𝜃),we can know
that:

𝑞̂(𝐻′′𝑛 (𝜃)) ≤
𝑇∑︁
𝑖=1

𝑞̂(|𝜃𝑖 | > (𝐵 + 1)) =
𝑇∑︁
𝑖=1

𝑞̂(𝜃𝑖 > (𝐵 + 1)) + 𝑞̂(𝜃𝑖 < −(𝐵 + 1)).

By the definition of variational distribution 𝑞̂(·), we know:

𝑞̂(𝜃𝑖 > 𝐵 + 1) ≤
∫ ∞

𝐵+1

1√︁
2𝜋𝜎2𝑚

exp
(−(𝑡 − 𝐵)2

2𝜎2𝑚

)
d𝑡,

𝑞̂(𝜃𝑖 < −(𝐵 + 1)) ≤
∫ −(𝐵+1)

−∞

1√︁
2𝜋𝜎2𝑚

exp
(−(𝑡 − 𝐵)2

2𝜎2𝑚

)
d𝑡.

And by Chernoff bound and the fact that 𝜎2𝑚 ≤ 1
2 log(𝑇/𝜀∗2𝑛)

, we can have:∫ ∞

𝐵+1

1√︁
2𝜋𝜎2𝑚

exp
(−(𝑡 − 𝐵)2

2𝜎2𝑚

)
d𝑡 ≤ 1

2 exp
(
− 1
2𝜎2𝑚

)
≤ 𝜀∗2𝑛

2𝑇 .

Thus we show that 𝑞̂(𝐻′′𝑛) ≤ 𝜀∗2𝑛 . □

Then by Lemma 7, we complete the proof. □

SQS 33

C. Implementation of Sqs

Algorithm 1 SQS: Variational learning and inference for sparse and quantized sub-distribution.
// Variational Learning
Input: Training data 𝐷; Full-precision weights (𝜃1, . . . , 𝜃𝑇); #components in GMM 𝐾; initial temper-

ature 𝜏, 𝜏′; prior variance 𝜎20.
1: Initialize trainable parameters {(𝜇𝑘, 𝜋̂𝑘, 𝜎𝑘)}𝐾𝑘=0;
2: while not converged do
3: calculate the approximate objective Ωapx; ⊲ in Equation (8)
4: update learnable parameters with the stochastic gradient descent;
return the sparse quantized weight sub-distribution 𝑞̂(𝜃).

// Variational Inference
Input: A sparse quantized weight distribution 𝑞̂(𝜃); #Bayesian average 𝑀; percentage of non-zero

weights Non-zero (%).
5: for 𝑛← 1 to 𝑀 do
6: sample quantized weight 𝜃𝑚 from the posterior 𝑞̂(𝜃); ⊲ in Equation (9)
7: get pruned weight 𝜃𝑚 with Non-zero, according to 𝜆 𝑖;
8: predict output 𝑦̂ for each testing input 𝑥, using Bayesian average with {𝜃1, . . . , 𝜃𝑀}; ⊲ in

Equation (10)
return The set of predicted outputs.

Pretrained model setting.

Taking the compression of the Llama3.2-1B model as an example, we first download the pre-trained
model from Hugging Face2 using the Python package “transformers”. We then fine-tune the model
on the considered SST-2 task before applying our Sqs for compression. We find that omitting the
fine-tuning step significantly degrades the performance of Sqs.

For ResNet models, we use publicly available pre-trained models obtained by the Python package
“timm” on the CIFAR-10 and CIFAR-100 datasets and directly apply our Sqs for compression.

For the Bert-base model, we download the pre-trained model from Hugging Face3 using the Python
package “transformers”.

Initialization.

To initialize the learnable parameters of our Sqs method, denoted as {𝜇𝑘, 𝜎𝑘, 𝜋𝑘}𝐾𝑘=1, we employ the
K-means algorithm. Specifically, the DNN weights of a given layer are first clustered into 𝐾 groups.
For each group 𝐺𝑘, the mean 𝜇𝑘 and standard deviation 𝜎𝑘 are computed as the empirical statistics of
the weights in that group, while the mixture coefficient 𝜋𝑘 is set to the proportion of weights in group
𝑘 relative to the total number of weights in the layer.

We assume that K-means yields 𝐾 disjoint groups of weights, denoted as {𝐺1, . . . , 𝐺𝐾}, such that⋃𝐾
𝑘=1 𝐺𝑘 covers all weights in the selected layer. The initial parameters are then defined as:

𝜇𝑘 =
1
|𝐺𝑘 |

∑︁
𝜃𝑖∈𝐺𝑘

𝜃𝑖, 𝜎𝑘 =

√︄
1

|𝐺𝑘 | − 1
∑︁
𝜃𝑖∈𝐺𝑘
(𝜃𝑖 − 𝜇𝑘)2, 𝜋𝑘 =

|𝐺𝑘 |∑𝐾
𝑗=1 |𝐺 𝑗 |

.

2https://huggingface.co/meta-llama/Llama-3.2-1B
3https://huggingface.co/huggingface-course/bert-finetuned-squad

https://huggingface.co/meta-llama/Llama-3.2-1B
https://huggingface.co/huggingface-course/bert-finetuned-squad

SQS 34

Implementing marginal 𝑞(𝜃𝑖).

To make the distribution differentiable, we reparameterize 𝜆 𝑖 (as defined in Equation 6) using the
following equation:

𝜆 𝑖 =
exp(𝑠̃𝑖/𝜏′)

1 + exp(𝑠̃𝑖/𝜏′)
, (33)

where the temperature 𝜏′ is set to a fixed constant to stabilize the training process. To better exploit
the learned pruning parameters in later stages of training, we halve 𝜏′ after completing half of the
total training steps to stabilize the training and exploit more around the optimal.

Implementing quantization.

We observe that weight distributions vary significantly across layers, including Gaussian and long-
tailed forms. In particular, long-tailed distributions contain a small subset of weights with large
magnitudes, as illustrated in Figure 8 for the Llama model. And the previous works (Frantar and
Alistarh, 2022; Hubara et al., 2021; Nagel et al., 2020) have demonstrated that layer-wise compression
methods lead to better performance.

To address performance degradation arising from such heterogeneous distributions, we extend
our proposed method to support layer-wise quantization, where each group of weight parameters
within a layer is assigned its own quantization set. This enables each layer to learn and utilize a
distinct, trainable quantization set tailored to its distribution.

For layers with long-tailed distributions, we further introduce an outlier-aware windowing strategy.
Specifically, the weights 𝜃 in each layer are partitioned into four windows, with two dedicated to
capturing the lower and upper tails of the distribution. To identify these tail regions, we apply a
standard outlier detection rule based on the 5× interquartile range (IQR): let 𝑞1 and 𝑞3 denote the
first and third quartiles of the weights, and define IQR = 𝑞3 − 𝑞1. The outlier-aware windows are then
defined as [min(𝜃), 𝑞1 − 5 × IQR] and [𝑞3 + 5 × IQR,max(𝜃)]. Within each of the four windows in
every layer, we fit a 𝐾-component GMM to approximate the local weight distribution.

We adopt the layer-wise quantization scheme with outlier-aware windowing in all our experi-
ments. This approach improves the preservation of extreme values during quantization and enhances
robustness across layers. An ablation study evaluating the effectiveness of outlier-aware windowing is
presented in Figure 2.

Hyperparameter Configuration.

The number of Gaussian components is set to 𝐾 = 16, which balances compression rate and perfor-
mance degradation. This setting is further analyzed in the case study shown in Figure 3. All models
are trained on an NVIDIA H100 GPU with 80GB of memory.

During training and testing, for ResNet-18, ResNet-20, ResNet-32, ResNet-50, ResNet-56, BERT-
base, LLaMA3.2-1B, and Qwen2.5-0.5B models, the settings are:

• Training Time: Approximately 30 minutes for ResNet models (ResNet-18 through ResNet-56);
4 hours for BERT-base; 24 hours for both LLaMA3.2-1B and Qwen2.5-0.5B.

• Optimizer: AdamW is used consistently across all models.
• Quantization Learning Rate: 5 × 10−4 for ResNet-18; 5 × 10−5 for all other models.

SQS 35

• Pruning Learning Rate: Fixed at 0.012 for all models.
• Temperature Hyperparameters: 𝜏 in Eq. 6 is set to 5 × 10−4 and 𝜏′ in Eq. 33 is set to 0.0125.
• Pruning Schedule: A polynomial schedule is used for all models.

SQS 36

D. Experiment Settings

D.1. Experiment settings for benchmark with all baselines

Benchmark compression on ResNet models.

We present experiments using ResNet architectures on the CIFAR-10 and CIFAR-100 datasets. When
compressing ResNet models, our method requires fine-tuning over the training dataset, completing
the compression process within 10 epochs. To achieve high compression rates, we represent each
layer’s weights with either 4 or 16 components (i.e. 𝐾 = 4 or 𝐾 = 16 for each layer) and apply a
sparsity level of 50%. As shown in Table 1, our methods compress the models by factors ranging from
16 ∼ 32× while keeping accuracy drops below 1.3%. For example, compressing ResNet-20 by a factor
of 16 results in an accuracy drop of only 0.52%. Likewise, compressing ResNet-32 by a factor of 32×
yields a minimal accuracy reduction of 1.29%. Additionally, we compress ResNet-56 by a factor of 32,
observing an accuracy drop of only 0.84%. Compared to other methods, our approach achieves much
higher compression rates with smaller decreases in accuracy.

Benchmark compression on Bert-base model.

We further investigate our compression method on attention-based models. We apply our compression
model on BERT-base (Devlin et al., 2019) model and test it on the SQuAD V1.1 dataset (Rajpurkar
et al., 2016). Similarly, we consider the F1 score drop and compression rate as the evaluation metrics.
During the compression process, the BERT model is fine-tuned on the training dataset, with the entire
procedure completed within 3 epochs.

We compressed the BERT model using 𝐾 = 16 Gaussian components and pruned 75% of its
parameters, leading to a 32× compression rate. We employed layer-wise quantization combined with
unstructured pruning to attain these results.

Benchmark compression on Llama and Qwen models.

Due to hardware limitations, we cannot run very large-scale LLMs, which are Llama3.1-8B and
Qwen2.5-7B.

D.2. Experiment settings for ablation studies for Sqs method

Impact of different window strategies.

For Equal Window strategy, Given a layer of weights 𝜃, we group the weights into 4 windows where
each one has an equal window size max(𝜃)−min(𝜃)

4 . Within each window, a 𝐾-components GMM is
applied to approximate the weights distribution.

Impact of different inference strategies.

The alternative is greedy approach is to greedily select the most likely weight for making predictions
on the test set. Specifically, for each quantized weight 𝜃𝑖, we choose the index 𝑘∗ corresponding to
the highest posterior probability 𝜙𝑘∗ (𝜃𝑖). The quantized weight is then set to the mean 𝜇𝑘∗ of the
selected component, and the predicted output 𝑦̂ is computed using these selected means. Formally,

SQS 37

this greedy inference strategy is given by:

𝑦̂ = 𝑓 (𝑥; 𝜇𝑘∗), 𝑘∗ = argmax
𝑘

𝜙𝑘 (𝜃𝑖), 𝑄(𝜃𝑖) = 𝜇𝑘∗ . (34)

We empirically compare the greedy inference approach with Bayesian averaging in the ablation study
shown in Figure 3.

Impact of different priors.

For comparison, we consider a zero-mean Gaussian distribution as the prior and replace the delta
distribution with a Gaussian distribution in the variational family. That is, any 𝑞′(𝜃) ∈ F ′ has the
form:

𝜃𝑖 |𝛾𝑖 ∼ 𝛾𝑖
𝐾∑︁
𝑘=1

𝜙𝑘 (𝜃𝑖)N (𝜇𝑘, 𝜎2𝑘) + (1 − 𝛾𝑖)N (0, 𝜎20), 𝛾𝑖 ∼ Bern(𝜆 𝑖).

Based on this, we can get the modified marginal variational distribution 𝑞′(𝜃𝑖) as:

𝑞′(𝜃𝑖) = 𝜆 𝑖

𝐾∑︁
𝑘=1

𝜙𝑘 (𝜃𝑖)N (𝜇𝑘, 𝜎2𝑘) + (1 − 𝜆 𝑖)N (0, 𝜎20). (35)

Thus, following the same reasoning and derivation as we get the equation (8), The Gaussian prior
can be obtained by:

Ω′ = −𝔼𝑞′ (𝜃)
[log 𝑝(𝐷; 𝜃)] + 𝑇∑︁

𝑖=1
𝐷KL

(
𝑞′(𝜃𝑖)∥N (0, 𝜎20)

)
= −𝔼𝑞′ (𝜃)

[log 𝑝(𝐷; 𝜃)] + 𝑇∑︁
𝑖=1

𝐷KL
(
𝑞′(𝜃𝑖)∥(𝜆 𝑖 + (1 − 𝜆 𝑖))N (0, 𝜎20)

)
≤ −𝔼𝑞′ (𝜃)

[log 𝑝(𝐷; 𝜃)] + 𝑇∑︁
𝑖

𝜆 𝑖𝐷KL

(
𝐾∑︁
𝑘=1

𝜙𝑘 (𝜃𝑖)N (𝜇𝑘, 𝜎2𝑘)

N(0, 𝜎20)) . (Gaussian prior)

We compare the impact of the above Gaussian prior with the proposed Spike-and-GMM priors and
summarize the result in Table 4.
Description of Baselines. For the following lines of baselines, we use the reported results in their

papers:

• Optimal Brain Surgeon (OBS) (Hassibi et al., 1993) selects weights for removal from a trained
neural network using second-order information.

• BitSplit (Wang et al., 2020a) incrementally constructs quantized values using a squared error
metric based on residual errors.

• AdaQuant (Hubara et al., 2021) utilizes STE for direct optimization.
• BRECQ (Li et al., 2021) integrates Fisher information into the optimization process and focuses

on the joint optimization of layers within individual residual blocks.
• Exact Optimal Brain Quantization (OBQ) (Frantar and Alistarh, 2022) adapts second-order

weight pruning methods to quantization tasks.
• GPTQ (Frantar et al., 2023) employs second-order information for error compensation on

calibration sets to speed up generative models.

SQS 38

We adopt their implemented code and use the same setting for training and testing:

• AWQ (Lin et al., 2024) implements activation-aware quantization, selectively bypassing the
quantization of key weights4. This method is a training-free method, which does not need extra
training on the selected dataset.

• DGMS (Dong et al., 2022) is an automated quantization method that utilizes Mixtures of
Gaussian to avoid the aforementioned problem5. We use their code base and configure it with
the same hyperparameters. Their algorithm is trained on the same dataset for fairness of
comparison.

Definition of Evaluation Metrics.

Let 𝐾 denote the number of shared weight vectors. Then, the metric Bits is defined as log2 𝐾.

E. Experiment Results for Full-precision Weight Distribution Visualization

We present the visualization of the long-tailed weight distributions for the Llama3.2 model in Figures 6
and 7, and for the Qwen2.5 model in Figures 4 and 5.

4https://github.com/mit-han-lab/llm-awq
5https://github.com/RunpeiDong/DGMS

https://github.com/mit-han-lab/llm-awq
https://github.com/RunpeiDong/DGMS

SQS 39

0.0 0.5
0

5

10

15

(1) Weight Histogram
−0.6 −0.4

0

2

4

6

1e−1

(2) Left Tail Zoom

Layer 0 Input Layernorm

−2 0 2
−0.2

0.0

0.2

0.4

(3) Q-Q Plot

1.5×IQR Full-precision weights

−0.05 0.00 0.05
0

10

20

(1) Weight Histogram
−0.4 −0.3 −0.2 −0.1

0.0

0.5

1.0

(2) Left Tail Zoom

Layer 0 MLP Down Projection

−2 0 2
−0.05

0.00

0.05

(3) Q-Q Plot

1.5×IQR Full-precision weights

−0.1 0.0 0.1
0

10

20

(1) Weight Histogram
−0.4 −0.2

0.0

0.5

1.0

(2) Left Tail Zoom

Layer 0 MLP Gate Projection

−2 0 2

−0.05

0.00

0.05

(3) Q-Q Plot

1.5×IQR Full-precision weights

−0.05 0.00 0.05
0

10

20

(1) Weight Histogram
−0.2 −0.1

0.0

0.5

1.0

(2) Left Tail Zoom

Layer 0 MLP Up Projection

−2 0 2
−0.05

0.00

0.05

(3) Q-Q Plot

1.5×IQR Full-precision weights

0.6 0.7 0.8
0

10

20

(1) Weight Histogram
0.45 0.50 0.55 0.60

0

1

2

3

(2) Left Tail Zoom

Layer 0 Post-Attention LayerNorm

−2 0 2

0.75

1.00

1.25

(3) Q-Q Plot

1.5×IQR Full-precision weights

−0.2 0.0 0.2
0

5

10

(1) Weight Histogram
−0.6 −0.4 −0.2

0.0

0.5

1.0

(2) Left Tail Zoom

Layer 0 Self-Attention K Projection

−2 0 2
−0.1

0.0

0.1

(3) Q-Q Plot

1.5×IQR Full-precision weights

Figure 4 | Weight distribution of different layers in Qwen2.5 model (part 1).

SQS 40

−0.05 0.00 0.05
0

20

40

(1) Weight Histogram
−0.3 −0.2 −0.1

0

1

2

3

(2) Left Tail Zoom

Layer 0 Self-Attention O Projection

−2 0 2

−0.02

0.00

0.02

(3) Q-Q Plot

1.5×IQR Full-precision weights

−0.1 0.0 0.1
0

5

10

(1) Weight Histogram
−0.75 −0.50 −0.25

0.0

0.5

1.0

(2) Left Tail Zoom

Layer 0 Self-Attention Q Projection

−2 0 2
−0.1

0.0

0.1

(3) Q-Q Plot

1.5×IQR Full-precision weights

−0.025 0.000 0.025
0

20

40

(1) Weight Histogram
−0.06 −0.04

0

2

4

(2) Left Tail Zoom

Layer 0 Self-Attention V Projection

−2 0 2

−0.02

0.00

0.02

(3) Q-Q Plot

1.5×IQR Full-precision weights

−0.05 0.00 0.05
0

10

20

(1) Weight Histogram
−0.15 −0.10 −0.05

0.0

0.5

1.0

(2) Left Tail Zoom

Embedding Layer

−2 0 2
−0.05

0.00

0.05

(3) Q-Q Plot

1.5×IQR Full-precision weights

7.0 7.5
0

1

2

3

(1) Weight Histogram
0.0 2.5 5.0

0.0

2.5

5.0

7.5

1e−1

(2) Left Tail Zoom

Norm weight

−1 0 1
7.3

7.4

7.5

7.6

(3) Q-Q Plot

1.5×IQR Full-precision weights

−0.1 0.0 0.1
0

10

20

30

(1) Weight Histogram
−0.07 −0.06

0

1

2

(2) Left Tail Zoom

Score weight

−2 0 2

−0.05

0.00

0.05

(3) Q-Q Plot

1.5×IQR Full-precision weights

Figure 5 | Weight distribution of different layers in Qwen2.5 model (part 2).

SQS 41

0.0 0.1 0.2 0.3
0

5

10

(1) Weight Histogram
−0.6 −0.4 −0.2 0.0

0

1

2

3

(2) Left Tail Zoom

Layer 0 Input Layernorm

−2 0 2

0.0

0.2

(3) Q-Q Plot

1.5×IQR Full-precision weights

−0.05 0.00 0.05
0

10

20

(1) Weight Histogram
−0.6 −0.4 −0.2

0.0

0.5

1.0

(2) Left Tail Zoom

Layer 0 MLP Down Projection

−2 0 2
−0.05

0.00

0.05

(3) Q-Q Plot

1.5×IQR Full-precision weights

−0.1 0.0 0.1
0

10

20

(1) Weight Histogram
−0.6 −0.4 −0.2
0

2

4

6

1e−1

(2) Left Tail Zoom

Layer 0 MLP Gate Projection

−2 0 2

−0.05

0.00

0.05

(3) Q-Q Plot

1.5×IQR Full-precision weights

−0.1 0.0 0.1
0

10

20

(1) Weight Histogram
−0.3 −0.2 −0.1
0

2

4

6

1e−1

(2) Left Tail Zoom

Layer 0 MLP Up Projection

−2 0 2
−0.05

0.00

0.05

(3) Q-Q Plot

1.5×IQR Full-precision weights

0.20 0.22
0

25

50

75

(1) Weight Histogram
−0.2 0.0

0.0

2.5

5.0

7.5

(2) Left Tail Zoom

Layer 0 Post-Attention LayerNorm

−2 0 2
0.0

0.1

0.2

(3) Q-Q Plot

1.5×IQR Full-precision weights

−0.1 0.0 0.1
0

5

10

(1) Weight Histogram
−0.4 −0.2

0.0

0.5

1.0

(2) Left Tail Zoom

Layer 0 Self-Attention K Projection

−2 0 2
−0.1

0.0

0.1

(3) Q-Q Plot

1.5×IQR Full-precision weights

Figure 6 | Weight distribution of different layers in Llama3 model (part 1).

SQS 42

−0.05 0.00 0.05
0

20

40

(1) Weight Histogram
−0.3 −0.2 −0.1

0.0

0.5

1.0

1.5

(2) Left Tail Zoom

Layer 0 Self-Attention O Projection

−2 0 2

−0.02

0.00

0.02

(3) Q-Q Plot

1.5×IQR Full-precision weights

−0.1 0.0 0.1
0

5

10

15

(1) Weight Histogram
−0.6 −0.4 −0.2

0.0

0.5

1.0

1.5

(2) Left Tail Zoom

Layer 0 Self-Attention Q Projection

−2 0 2

−0.05

0.00

0.05

(3) Q-Q Plot

1.5×IQR Full-precision weights

−0.025 0.000 0.025
0

20

40

60

(1) Weight Histogram
−0.06 −0.04 −0.02
0

2

4

(2) Left Tail Zoom

Layer 0 Self-Attention V Projection

−2 0 2

−0.02

0.00

0.02

(3) Q-Q Plot

1.5×IQR Full-precision weights

−0.1 0.0 0.1
0

5

10

15

(1) Weight Histogram
−0.3 −0.2 −0.1
0

2

4

6

1e−1

(2) Left Tail Zoom

Embedding Layer

−2 0 2

−0.05

0.00

0.05

(3) Q-Q Plot

1.5×IQR Full-precision weights

2.0 2.5 3.0
0

5

10

(1) Weight Histogram
1 2

0.0

0.5

1.0

1.5

(2) Left Tail Zoom

Norm weight

−2 0 2
2.00

2.25

2.50

2.75

(3) Q-Q Plot

1.5×IQR Full-precision weights

−0.1 0.0 0.1
0

10

20

30

(1) Weight Histogram
−0.07 −0.06

0

1

2

(2) Left Tail Zoom

Score weight

−2 0 2

−0.05

0.00

0.05

(3) Q-Q Plot

1.5×IQR Full-precision weights

Figure 7 | Weight distribution of different layers in Llama3 model (part 2).

SQS 43

−0.2 0.0 0.2
Weights value

0

10

20

D
en

si
ty

−0.2 0.0 0.2
Weights value

0

10

20

(a) Self-attention layer K projection

−0.4 −0.2
Weights value

0

1

2

3

Full-precision weights

SQS with outlier-aware windows

SQS with equal windows

1.5×IQR

−0.05 0.00 0.05
Weights value

0

50

100

150

D
en

si
ty

−0.05 0.00 0.05
Weights value

0

50

100

150

(b) Self-attention layer O projection

−0.3 −0.2 −0.1
Weights value

0.0

2.5

5.0

7.5

×101

−0.1 0.0 0.1
Weights value

0

20

40

D
en

si
ty

−0.1 0.0 0.1
Weights value

0

20

40

(c) Self-attention layer Q projection

−0.50 −0.25
Weights value

0

2

4

6

−0.025 0.000 0.025
Weights value

0

50

100

150

D
en

si
ty

−0.025 0.000 0.025
Weights value

0

50

100

150

(d) Self-attention layer V projection

−0.06 −0.04
Weights value

0

1

2

×101

Figure 8 | For the compressed weight distributions of the 𝐾, 𝑂, 𝑄, and 𝑉 matrices in the self-attention
layer of the Llama3.2-1B model, Sqs using the outlier-aware window strategy (Left) more effectively
preserves the characteristics of the full-precision weight distribution compared to the equal-sized
window strategy (Middle). This improvement is particularly noticeable in the left tail region, as
highlighted in (Right).

	Introduction
	Preliminaries
	Methodology
	SQS: Variational learning for sparse and quantized sub-distribution
	Theoretical Justification of SQS method

	Related Works
	Experiments
	Experiment settings
	Experimental analysis
	Ablation studies for Sqs method

	Conclusion
	Derivation of Approximate Objective
	An upper bound on the KL divergence between two mixtures
	Derivation of Approximate Objective

	Proof of Theorem 1
	Proof of Lemma 4
	Proof of Lemma 5

	Implementation of Sqs
	Experiment Settings
	Experiment settings for benchmark with all baselines
	Experiment settings for ablation studies for Sqs method

	Experiment Results for Full-precision Weight Distribution Visualization

